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Summary

Purpose: The peroxisome proliferator-activated recep-
tor γ (PPARγ), known to play a key role in homeostatic bio-
logical pathways, is also implicated in the process of carcino-
genesis. Ligands for PPARγ and its heterodimeric partner, 
retinoid-X receptor (RXR), have exhibited anticancer effects 
both in vitro and in vivo. Unexpectedly, some studies suggest-
ed that PPARγ ligands may stimulate cancer formation. This 
study aimed to estimate the signaling of PPARγ-RXRα het-
erodimer in bladder urothelial carcinomas (BUC).

Methods: We studied PPARγ and RXRα expression in 
specimens obtained from 97 patients with BUC of various 

grades and stages using immunohistochemistry.
Results: PPARγ expression was significantly downreg-

ulated with BUC stage and grade progression, and the dy-
namics of this phenomenon was significantly influenced by 
RXRα’s level of expression.

Conclusion: The positive association of PPARγ expres-
sion in BUC with more differentiated, non-invasive tumors is 
strengthened by the presence of RXRα. This knowledge could 
probably be of use in the development of new chemothera-
peutic agents.
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Introduction

PPARs comprise an important subfamily of the 
nuclear hormone receptor (NHR) superfamily. The most 
intensively studied PPAR isoform is PPARγ. During the 
past decade it has been shown that PPARγ is a transcrip-
tion factor that participates in biological pathways of great 
importance [1-5] and, like other members of the NHR su-
perfamily, controls the expression of a large number of 
genes relevant to the process of carcinogenesis [6].

 Loss of PPARγ expression could be an important 
risk factor for the development of carcinoma, as animal 
studies have shown that PPARγ heterogeneous (+/−) 
mice are at enhanced risk for colon carcinogenesis af-
ter exposure to the colon carcinogen azoxymethane 
[7]. On the other hand, other studies have shown that 
PPARγ signaling increases the risk of breast cancer in 
mice already susceptible to the disease [8]. It has been 
proposed that this paradox could be explained by dif-
ferent levels of PPARγ gene expression and signaling 
in different tissues at risk for carcinogenesis [9].

The ability of PPARγ to modulate gene activity re-
quires the presence of RXR. RXRs are members of the 
steroid hormone receptor superfamily. Three RXR iso-
types (α, β, γ) have been identified. Like other members 
of this family, RXRs act as ligand-activated DNA-bind-
ing transcription factors through binding -as heterodi-
mers with RARs, the other type of retinoid receptors- 
to cis-acting RA-response elements present in cognate 
genes [10]. They also play a central role as heterodi-
meric partners for other nuclear receptors (subfamily1 
of nuclear receptors), including the PPARs [11]. The 
RXR/PPARγ heterodimer represents a permissive bi-
functional transcription factor [12], that allows integra-
tion of two independent hormone signaling pathways by 
a single functional unit [13]. Moreover, there is strong 
evidence that RXRα is mainly responsible for intranu-
clear distribution of PPARγ [14]. All-trans-retinoic acid 
(a retinoid acid receptor ligand) has been used success-
fully to induce remission of acute promyelocytic leuke-
mia [15]. Retinoids are able to reverse premalignant le-
sions and prevent recurrence of head and neck cancers 
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development was done using DAB+ Chromogen (DA-
KOCytomation). The primary antibodies used in the 
present study were: Sc 7273, mouse polyclonal (dilu-
tion 1:50) for PPARγ and Sc 553, rabbit polyclonal (di-
lution 1:100) for RXRα, (both Santa Cruz Biotechnolo-
gy). The semiquantitative method based on a four-point 
scale was chosen for the assessment of the intensity of 
immunostaining: - (negative); + (weak positivity); ++ 
(moderate positivity); +++ (strong positivity)

Statistical analysis

The 97 tissue specimens were categorized by grade 
and by stage of BUC. Grade I BUC were classified as low 
grade (n=29), whereas grade II and grade III composed 
the high grade (n=68) BUC group. Stages pTa and pT1 
were grouped together as early stage cancer (n=63) and 
stages pT2 or higher as advanced cancer (n=34).

The relationship between each molecular target 
expression and the different patient and tissue charac-
teristics [age (>70/≤70 years old), sex (male/female), 
grade (low/high) and stage (early/advanced)] was eval-
uated for its strength and direction (positive vs. nega-
tive) using the Spearman’s rho correlation coefficient. 
The possibility of statistically significant different lev-
els of expression of the examined transcriptional factors 
among the different patient and tissue parameters was 
evaluated by nonparametric Mann-Whitney analysis.

Results

The immunohistochemical results are summa-
rized in Tables 2 and 3.

Expression of PPARγ

The staining reaction was predominantly local-
ized to nuclei and was more intense in the superficial 
urothelial cells than in the basal cells.

Among the 29 specimens with low grade BUC 9 
(31%) showed moderate positivity for PPARγ, while 
20 (69%) showed strong positivity for PPARγ (Figure 
1a). Eight out of 68 (11.8%) specimens with high grade 

[16] and also to suppress carcinogenesis in a variety of 
tissue types in many animal models [17].

To our knowledge the present study is the first 
morphological evaluation of PPARγ and RXRα differ-
ential expression and cross-talk in a series of urothelial 
carcinomas of the bladder.

Methods

Patients and histopathological classifications

For the present study we used a total of 97 ar-
chived human paraffin-embedded sections from the 
Pathology Department of the University hospital of 
Patras. These specimens were obtained from patients 
who had undergone transurethral biopsy or cystecto-
my from 2000 to 2002. The mean patient age was 72.2 
± 10.52 years (range 23-90). Thirty-seven (38.1%) 
were 70 years old or less and 60 (61.9%) were over 70 
years. Twenty-four out of the 97 patients were females 
(24.7%) and 73 males (75.3%). Tissue specimens were 
fixed in 10% buffered formalin and embedded in paraf-
fin. Serial 4-μm sections were obtained for hematoxy-
lin-eosin staining and for immunohistochemical study. 
The histopathological and stage classification of the tis-
sue specimens used is summarized in Table 1.

Immunohistochemistry

Four-micrometer sections were mounted on Su-
per Frost Plus slides, baked at 60 ºC for 60 min, depar-
affinized and rehydrated through graded alcohol rinses. 
Heat-induced antigen retrieval was performed by im-
mersing the slides in EDTA-NaOH buffer (pH 8.0) and 
microwaving at 550W for 2.5 min, at 750W for 2.5 min 
and finally at 350W for 10 min. The slides were then 
cooled at room temperature for 20 min. Antigen was de-
tected by 2-h incubation at room temperature with the 
relevant primary antibody, followed by an appropriate 
secondary antibody conjugated to a peroxidase complex 
(EnVision+ poly-HRP system, DAKOCytomation). 
Negative controls were processed by substituting the 
primary antibody with nonimmune mouse serum. Color 

Table 1. Histopathological and stage classification of the 97 specimens

Grade Ta T1 T2 T3 T4 Total, n (%)

I 14 15    29 (29.9)
II  6 18  7   31 (32)
III  10 20 3 4 37 (38.1)

Total, n (%) 20 (20.6) 43 (44.4) 27 (27.8) 3 (3.1) 4 (4.1) 97 (100)
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(2.9%) were weakly positive. RXRα expression did not 
show any statistically significant differentiation between 
the two histopathological groups of BUC (p>0.05).

Eighteen out of 63 (28.6%) specimens in the ear-
ly-stage group showed moderate positivity for RXRα, 
while the rest 45 (71.4%) were strongly positive (Fig-
ures 1b, 1d). Among 34 specimens of advanced stage, 
2 (5.9%) were weakly positive, 13 (38.2%) moderately 
positive and 19 (55.9%) strongly positive (Figure 1f).

No statistically significant difference in RXRα 
expression was detected between the two groups of 
BUC stages (p>0.05).

Statistical correlations between PPARγ and RXRα 
expression

Importantly, the level of RXRα expression influ-
enced the strength of PPARγ’s downregulation and was 
related with loss of BUC differentiation (Spearman 
rho = –0.371, p = 0.040 for RXRα expression = +2 and 
Spearman’s rho = –0.393, p = 0.001 for RXRα expres-
sion = +3). RXRα expression = +1 was found only in 2 
specimens with high grade BUC, both of which were 
immunonegative for PPARγ (hence variable PPARγ 
and variable grade were constant). Inversely, PPARγ’s 
contribution in differentiation is enhanced by the pres-
ence of RXRα.

Likewise, the level of RXRα expression was shown 
to significantly influence the strength of PPARγ down-
regulation as BUC stage advanced (Spearman rho = 
–0.432, p=0.015 for RXRα expression = +2 and Spear-
man’s rho = –0.519, p<0.0001 for RXRα expression = 
+3). RXRα expression = +1 was found only in 2 speci-

BUC showed weak positivity (Figure 1e), 36 (52.9%) 
were moderately positive (Figure 1c) and 20 (29.4%) 
were strongly positive for PPARγ, while 4 (5.9%) spec-
imens were immunonegative.

The expression of PPARγ was shown to be sig-
nificantly different among the two histopathological 
groups of BUC (Mann-Whitney p<0.0001). Specifical-
ly, a statistically significant downregulation of PPARγ 
was depicted (Spearman’s rho=–0.392, p<0.0001) with 
loss of differentiation in BUC (Figure 2a).

As for disease stage, 28 out of 63 (44.4%) speci-
mens with early-stage cancer showed moderate posi-
tivity (Figure 1c), while the rest 35 (55.6%) exhibited 
strong positivity for PPARγ (Figure 1a). Among the 34 
tissue specimens with advanced-stage BUC 4 (11.8%) 
were immunonegative, 8 (23.5%) were weakly posi-
tive (Figure 1e), 17 (50%) moderately positive and 5 
(14.7%) strongly positive for PPARγ.

The comparison of PPARγ expression between 
early and advanced cancer showed a statistically sig-
nificant difference (Mann-Whitney p<0.0001) among 
these two groups and more specifically a statistically 
significant downregulation (Spearman’s rho=–0.513, 
p<0.0001) as cancer became invasive (Figure 2b).

Expression of RXRα

In 18 of 29 (62.1%) specimens with low grade, 
strong positivity for RXRα was seen (Figure 1b), where-
as the rest 11 (37.9%) showed moderate positivity.

Most specimens with high grade BUC (46 out of 
68; 67.6%) showed strong positivity (Figures 1d, 1f), 20 
out of 68 (29.4%) were moderately positive and only 2 

Table 2. Immunohistochemical expression of peroxisome proliferator-activated receptor (PPAR) γ and retinoid-
X-receptor (RXRα) in low and high grade urothelial carcinomas of the bladder (BUC)

Antibodies BUC grade Negative +1 n +2 n +3 n
  n (%) n (%) n (%) n (%)

PPARγ Low grade (n=29) – –  9 (31.0) 20 (69.0)
 High grade (n=68) 4 (5.9) 8 (11.8) 36 (52.9) 20 (29.4)
RXRα Low grade (n=29) – – 11 (37.9) 18 (62.1)
 High grade (n=68) – 2 (2.9) 20 (29.4) 46 (67.6)

Table 3. Immunohistochemical expression of peroxisome proliferator-activated receptor (PPAR) γ and retinoid-
X-receptor (RXRα) in early and advanced stage urothelial carcinomas of the bladder (BUC)

Antibodies BUC grade Negative +1 n +2 n +3 n
  n (%) n (%) n (%) n (%)

PPARγ Early stage (n=63) – – 28 (44.4) 35 (55.6)
 Advanced stage (n=34) 4 (11.8) 8 (23.5) 17 (50.0) 5 (14.7)
RXRα Early stage (n=63) – – 18 (28.6) 45 (71.4)
 Advanced stage (n=34) – 2 (5.9) 13 (38.2) 19 (55.9)
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sion and early-stage BUC became more prominent.
Finally, PPARγ and RXRα level of expression 

had no statistically signifi cant correlation with patients’ 
sex (male vs. female) or age group (>70 vs. ≤70 years 
old; p>0.05).

mens with advanced stage BUC, both of which were im-
munonegative for PPARγ (hence variable PPARγ and 
variable stage were constant).

These results indicate that as RXRα expression 
became stronger, the relation between PPARγ expres-

Figure 1. Peroxisome proliferator-activated receptor (PPAR) γ and retinoid-X-receptor (RXRα) expression in three different urothelial 
carcinomas of the bladder (BUC) cases: low grade early-stage BUC with strong positivity for PPARγ (a, ×400) and strong positivity for 
RXRα (b, ×400). High grade early-stage BUC with moderate positivity for PPARγ (c, ×400) and strong positivity for RXRα (d, ×400). 
High grade advanced-stage BUC with weak positivity for PPARγ (e, ×400) and strong positivity for RXRα (f, ×400).
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der- specifi c carcinogen [30]. It has also been proposed 
that nonneoplastic urothelial cells, which proved to ex-
press PPARγ, could be more sensitive to the cytocidal 
effects of PPARγ ligands than carcinoma cells which 
have low transcriptional activity or even failure to ex-
press PPARγ [26].

In order to further elucidate PPARγ’s signal-
ing in BUC, we also studied the expression of its het-
erodimeric partner, RXRα, and the cross-talk between 
them. This study showed that RXRα expression en-
hances the differentiating role of PPARγ in urotheli-
um and strengthens PPARγ’s relationship with early-
stage BUC compared to advanced stages. The PPARγ-
RXR heterodimer can be activated by ligands of either 
PPARγ or RXR (permissive type) to cause a synergistic 
activation [12,13]. Retinoids enhance apoptosis caused 
from PPARγ ligands when given to preneoplastic le-
sions [31] or carcinoma cells [32-34].

Based on the observations from our study and the 
previous relevant knowledge, we propose that PPARγ 
ligands could be useful chemotherapeutic agents in low 
grade and early-stage BUC, but probably not as effec-
tive in less differentiated and invasive ones. Additional 
administration of RXR ligands may enhance the anti-
cancer and differentiating effect of PPARγ activation 
and probably reduce the side effects caused on nonneo-
plastic cells by PPARγ ligands, as smaller amounts will 
be needed to achieve the therapeutic result. Neverthe-
less, additional studies are needed to confi rm in vivo the 
applicability of this hypothesis.
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