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Summary

Purpose: Of all breast cancers, triple-negative and HER-2 
positive are the most aggressive breast cancer subtypes with 
a high risk of recurrence and worse prognosis. The study’s 
purpose was to further assess the molecular mechanisms un-
derlying aggression of breast cancer.

Methods: The microarray gene expression datasets of 
GSE29431 and GSE53752 were obtained from the GEO 
(Gene Expression Omnibus) database, which include HER-2 
positive breast cancer, triple-negative breast cancer (TNBC) 
and normal breast tissue samples. Differentially expressed 
genes (DEGs) were determined using the LIMMA package of 
R software and subsequently functional enrichment analysis 
was performed by the ClusterProfiler package in the R plat-
form. The STRING database was used to construct a pro-
tein-protein interaction (PPI) network. The most significant 
module and key genes were identified by Cytoscape software. 
Utilizing the Kaplan-Meier plotter and UALCAN database, 
we defined the key genes associated with prognotic values 
and molecular subtypes as invasive genes.

Results: In total, 428 common DEGs were identified, in-
cluding 143 upregulated and 285 downregulated. GO and 
KEGG pathway enrichment analysis indicated that the up-
regulated genes were associated with mitotic nuclear divi-
sion and cell cycle, whereas the downregulated genes were 
significantly associated with response to peptide and PPAR 
signaling pathway, respectively. A PPI network with 57 
nodes and 335 edges was established, from which one most 
significant module was identified. Moreover, 12 key genes 
selected from the module with high degree centrality = 21 
were highly associated with high clinical aggressiveness and 
worse overall survival rate.

Conclusions: Our studies could enhance the understanding 
of the molecular mechanism of breast cancer aggressiveness, 
and the identification of invasive key genes promoted the 
individualized and comprehensive treatment.
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Introduction

 Breast cancer is the most common type of ma-
lignancy affecting seriously the quality of life of 
patients and has an increasing incidence worldwide 
[1,2]. Breast cancer is a highly heterogeneous dis-
ease with 4 molecular subtypes: luminal A, lumi-
nal B, human epidermal growth factor receptor 2 
(HER-2)-enriched, and basal-like subtypes, which 
exhibit distinct molecular characteristics and clini-
cal behaviors [3,4]. Because of HER-2 gene amplifi-
cation or protein over-expression, HER-2 positive 
breast cancer is closely associated with aggres-

sive clinical behaviour [5,6], while triple-negative 
breast cancer (TNBC) is the most aggressive breast 
cancer subtype, exhibiting increased recurrence 
and decreased survival [7]. Therefore, they repre-
sent highly invasive biological characteristics. To 
improve the chance of survival, it is necessary to 
further understand the molecular mechanisms of 
aggressiveness in breast cancer.
 A large number of microarrays expression data-
sets are publicly available in the Gene Expression 
Omnibus (GEO) database(https://www.ncbi.nlm.nih.
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gov/geo/), and data-mining the deposited datasets 
using bioinformatics methods may advance the 
understanding of invasiveness.
 In this study, two gene expression datasets, 
namely GSE29431 and GSE53752, were down-
loaded from the GEO database. DEGs between 
TNBC, HER-2 positive breast cancer, and normal 
breast tissues were identified respectively using 
the LIMMA package of R software (R version 3.6.2). 
Subsequently, Gene ontology function and KEGG 
pathway enrichment analysis were performed for 
DEGs by the clusterProfiler package in R software. 
The Search Tool for the Retrieval of Interacting 
Genes (STRING) database and protein-protein in-
teraction (PPI) database were used to identify the 
significant module and key genes. The expression 
levels and prognostic values of key genes were as-
sessed using the online Kaplan-Meier (KM) plot-
ter database(kmplot.com/analysis) and UVALCAN 
database (http://ualcan.path.uab.edu/index.html).

Methods 

Microarray data

 The gene expression profiles analyzed in this study 
were obtained from the GEO database. GSE29431 was 
based on platform GPL570 ([HG-U133_Plus_2]Affym-
etrix Human Genome U133 Plus 2.0 Array ), including 
12 HER-2 positive breast cancer samples and 28 nor-
mal breast tissue samples, while GSE53752 was based 
on the Agilent GPL7264 (Agilent-012097 Human 1A 
Microarray(V2)G4110B), including 51 TNBC samples 
and 25 normal breast tissue samples. The characteristics 
of the selected 2 datasets are summarized in Table 1.

Identification of DEGs

 To avoid false-positive results, corrections were 
made using the Bonferroni method. DEGs were deter-
mined using LIMMA package of R software [8,9] with 
a criterion of an adjust p value cut-off of <0.05 along 
with at least two-fold change. The common DEGs were 
identified by the Draw Venn Diagram tool(http://bioin-
formatics.psb.ugent.be/webtools/Venn/).

GO enrichment and KEGG pathway analyses of DEGs

 Gene ontology terms for the Biological Process (BP), 
Cellular Component (CC) and Molecular Function (MF) 
were analyzed. To identify GO enrichment and KEGG 

pathway of DEGs, the functional enrichment analysis was 
performed using R package [10], clusterProfiler(v3.12.0), 
with adjust p value <0.05 as a cut-off.

Construction of protein-protein interaction network and 
modules analysis

 A protein-protein interaction (PPI) network for 
DEGs was constructed using STRING database (https://
string-db.org/cgi/)with the combined score≥0.9, and was 
visualized using Cytoscape software (http://cytoscape.
org). Subsequently, the most significant module was 
identified by MCODE [11] plugin in cytoscape software, 
while the key genes were screened by the node degree 
in the Cytoscape plugin, cytoHubba [12].

Expression analysis of key genes in different breast subtypes

 UALCAN [13] is a user-friendly, interactive website 
for analyzing cancer transcriptome data, and provides a 
silicon-based platform for validation of target genes and 
identification of tumor subpopulation-specific candidate 
biomarkers. To further screen invasive-related genes, we 
evaluated the expression of key genes in different sub-
types of breast cancer samples by the UALCAN database.

Survival analysis of invasive key genes

 The Kaplan-Meier plotter [14,15] (http://kmplot.
com/analysis/) is a comprehensive online platform that 
can assess the effect of 54,675 genes on survival, based 
on 10,293 cancer samples. We conducted overall survival 
analysis of invasive key genes in breast cancer patients 
from the TCGA-BRCA database by using the Kaplan-
Meier plotter, with prognosis considered significant if 
a log rank p value was < 0.05.

Results

Identification of DEGs

 GSE29431 and GSE53752 were selected and 
underwent differentially expressed genes (DEGs) 
analysis using LIMMA package, with a cutoff of 
adjust p value < 0.05 and fold-change ≥ 2. In total, 
838 genes were up-regulated and 1417 genes were 
down-regulated in GSE29431, while 469 genes 
were up-regulated and 776 genes down-regulated 
in GSE53752. The volcano plot showed the differ-
entially expressed genes (Figure 1). The VENN plot 
showed the common 428 differentially expressed 
genes in two datasets (Figure 2).

Datasets Sample of breast cancer Platform

GSE29431 HER-2 Positive BC  12 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus2.0 Array

Normal   28

GSE53752 TNBC   51 GPL7264 Agilent-012097 Human 1A Microarray (V2)G4110B

Normal   25

Table 1. Basic characteristics of two datasets
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GO enrichment and KEGG pathway analyzes of DEGs

 GO function and pathway analyses were per-
formed on common upregulated and downregulat-
ed DEGs by clusterProfiler separately. We analyzed 
three parts of GO enrichment, including biological 
process (BP), cellular component (CC) and molecu-
lar function (MF). For the biological process (BP), 
upregulated genes were significantly enriched in 
the mitotic nuclear division and nuclear division, 
while downregulated genes were apparently en-
riched in the response to peptide and response to 
peptide hormone. For the cellular component (CC), 
upregulated genes were enriched in the spindle 
and chromosomal region, while downregulated 
genes were apparently enriched in the extracellular 
matrix and collagen-containing extracellular ma-
trix. For the molecular function (MF), upregulated 
genes were enriched in the protein C-terminus 
binding, while downregulated genes were appar-
ently enriched in the heparin binding and extracel-
lular matrix structural constituent.
 Furthermore, KEGG pathway analysis indicat-
ed that upregulated DEGs were mainly enriched 
in tht Cell cycle and Oocyte meiosis, while down-

regulated DEGs were involed in the PPAR signaling 
pathway and Tyrosine metabolism. The results of 
GO and KEGG pathway analysis are listed in Figure 
3 and Figure 4.

Construction of protein-protein interaction network 
and modules analysis

 The 428 differentially expressed genes were in-
put into STRING database for PPI network analysis 
which was visualized by Cytoscape software, and 
achieved a PPI network of 57 nodes and 335 edges, 
with the combined score=0.9 (Figure 5A). The most 
important cluster 1 which contained 22 nodes and 
221 edges was identified using the plug-in Molecu-

Figure 1. The volcano plot of DEGs in two datasets.
A: showed the volcano plot of DEGs for dataset GSE29431; 
B: showed the volcano plot of DEGs for dataset GSE53752. 
Red presented upregulated genes with log2FC>1 and adj 
p-value <0.05, while blue presented downregulated genes 
with log2FC<1 and adj p-value <0.05. Grey presented genes 
with no significant difference. FC: fold change; adj p-value: 
adjusted p-value; DEGs: differentially expressed genes.

Gene symbol Degree Expression

CDK1 21 up

NUSAP1 21 up

BUB1 21 up

KIF20A 21 up

CENPF 21 up

DLGAP5 21 up

CDCA8 21 up

UBE2C 21 up

SPAG5 21 up

BIRC5 21 up

CCNA2 21 up

KIF2C 21 up

CDC20 21 up

Table 2. The thirteen key genes with higher degree in 
Cluster 1

Figure 2. Venn diagram of common DEGs from the two 
datasets; A: Common upregulated genes; B: Common down-
regulated genes.
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lar Complex Detection (MCODE) tool in Cytoscape 
(Figure 5B). In total, 13 key genes are shown in Ta-
ble 2 and were selected by a criterion of degree = 21 
in the network.

Expression analysis of key genes and identification of 
invasive genes

 We analyzed the expression levels of 13 key 
genes across different molecular subtypes in 

Figure 3. GO and KEGG pathway functional enrichment 
analysis of common upregulated DEGs from the GSE29431 
and GSE53752 datasets. A: enrichment of cell component; 
B: enrichment of biological process; C: enrichment of mo-
lecular function; D: analysis of KEGG pathway; adj p-value 
<0.05 was considered as cutoff value of significant differ-
ence; GO: gene ontology; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; DEGs: differentially expressed genes; 
adj p-value: adjusted p-value.

Figure 4. GO and KEGG pathway functional enrich-
ment analysis of common downregulated DEGs from the 
GSE29431 and GSE53752 datasets. A: enrichment of cell 
component; B: enrichment of biological process; C: enrich-
ment of molecular function. D: analysis of KEGG pathway; 
adj p-value <0.05 was considered as cutoff values of signifi-
cant difference;GO: gene ontology; KEGG: Kyoto Encyclope-
dia of Genes and Genomes; DEGs: differentially expressed 
genes; adj p-value: adjusted p-value.
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breast cancer by the UVALCAN database. As it is 
shown in Figure 6, 12 key genes were closely asso-
ciated with different molecular subtypes, including 
CDK1, BIRC5, BUB1, CCNA2, CDC20, CDCA8, DLG-
cAP5, KF2C, KIF20A, NUSAP1, SPAG5 and UBE2C, 
with statistical significance of differences (p<0.05). 
Compared with triple negative breast cancer, the 
expression levels of 12 invasive genes were sig-
nificantly lower in luminal breast carcinoma. As a 
result, 12 genes served as invasive key genes.

Survival analysis of invasive key genes

 To determine if invasive key genes expression 
was related to patient prognosis, we performed sur-
vival analysis using online Kaplan-Meier plotter 
to evaluate the correlation between invasive key 
genes expression levels and overall survival rates 
in breast cancer patients. Using median expres-
sion level as the cutoff point, the 12 invasive key 
genes were categorized into high-expression group 
and low-expression group. Kaplan-Meier survival 

Figure 5. A: PPI network was constructed from common differentially expressed genes; red represented upregulated 
genes; B: The most significant module was identified from the PPI network; nodes indicated genes, while edges indicated 
protein-protein interaction; PPI: Protein-Protein interaction.
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Figure 6. The expressions of invasive key genes among molecular subtypes of breast cancer; A: CDK1; B: BIRC5;
C: BUB1; D: CCNA2; E: CDC20; F: CDCA8; G: CENPF without statistical significance; H: DLGAP5; I: KIF2C; J: KIF20A; 
K: NUSAP1; L: SPAG5; M: UBE2C.
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Figure 7. Kaplan-Meier survival curves of 12 invasive genes in breast cancer; Overall survival curves for (A) CDK1, 
known as CDC2; (B) BIRC5; (C) BUB1; (D) CCNA2, known as CCNA; (E) CDC20; (F) CDCA8; (G) DLGAP5; (H) KIF2C;
(I) KIF20A; (J) NUSAP1, known as PRO0310p1; (K) SPAG5; (L) UBE2C.
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analysis showed that high-expression group of 
invasive key genes were associated with a worse 
overall survival of breast cancer patients (log rank 
p<0.05). The results of survival analysis are shown 
in the Figure 7. 

Discussion

 Breast cancer is a highly heterogeneous dis-
ease whose aggressiveness apparently differs 
among different subtypes [16-18]. Because of high 
aggressiveness, HER-2 positive and TNBC are 
characteristic of high lymph node metastasis, high 
recurrence rate, and high mortality [19-21]. Until 
now, the molecular mechanisms of invasiveness 
of breast cancer are unclear. In the present study, 
GSE29431 and GSE53752 were deeply analyzed 
by LIMMA package to identify 428 commonly 
changed DEGs, including 143 upregulated and 285 
downregulated genes in TNBC and HER-2 positive 
breast cancer compared to normal breast cancer 
samples.
 GO was performed, which showed that the 
DEGs were mainly enriched in biological process. 
Upregulated genes were primarily associated with 
mitotic nuclear division and nuclear division, while 
downregulated genes were located in the response 
to peptide and response to peptide hormone. Up-
regulated DEGs showed an enrichment of KEGG 
pathway related to cell cycle and Oocyte meiosis, 
which are associated with development of tumors 
[22]. Downregulated DEGs were mostly associated 
with signaling pathway and tyrosine metabolism.
 Next, based on the analysis in the STRING da-
tabase and Cytoscape software, PPIs that contained 
57 nodes and 335 edges were obtained and visual-
ized, with the combined score=0.9. The most sig-
nificant genes were selected, with a cutoff of degree 
= 21. By VALCAN database, we got 12 invasive key 
genes which their expression levels differred in dif-
ferent molecular subtypes in breast cancer, includ-
ing CDK1, BIRC5, BUB1, CCNA2, CDC20, CDCA8, 
DLGAP5, KIF2C, KIF20A, NUSAP1, SPAG5 and 
UBE2C. Throungh Kaplan-Meier-plotter database, 
12 invasive key genes were related with worse 
prognosis in breast cancer patients.
 Based on the enrichment of GO and KEGG 
pathway, these upregulated DEGs generally may 
serve an important role in tumorigenesis and tu-
mor proliferation. Aberrant mitosis often leads to 
tumor occurrence [23]. Molecular studies have 
shown that tumor development is closely associ-
ated with the cell cycle. Therefore, regulation of 
tumor cell cycle is an important strategy and tar-
get of tumor therapy [24-26]. Then, downregulated 
DEGs increased the aggressiveness of breast cancer 

through decreasing the hormone receptor expres-
sion [27-28].
 CDK1 is one of the most important functions 
for regulating cell cycle progression in the major-
ity of mammalian cells [29]. Several studies have 
shown that CDK1-dysregulation leads to robust tu-
mor growth and high proliferation rate of cancer 
cells [30]. BIRC5 has been shown to play vital roles 
in carcinogenesis by influencing cell division and 
proliferation by inhibiting apoptosis [31]. BIRC5 
repression was able to decrease the proliferation of 
breast cancer cells, implying that BIRC5 acts like 
a tumor driver [32]. BUB1 is well-known as a key 
component of mitotic checkpoint, and plays impor-
tant roles in the proliferation and progression of 
the breast carcinoma [33,34]. CCNA2 (also known 
as CyclinA2) belongs to the highly conserved cyc-
lin family and is expressed in most tissues in the 
human body [35]. It was reported that CCNA2 may 
be involved in the processes of epithelial-mesen-
chymal transitions (EMT) and metastasis [36]. Cell 
division cycle 20 (CDC20) is critical in cell cycle 
progression and indicates an aggressive course of 
disease risk [37]. The human cell division cycle as-
sociated 8 (CDCA8) gene is a member of the chro-
mosomal passenger complex (CPC) and is indispen-
sable for segregation of the chromosome during 
cell division [38]. Overexpression and nuclear ac-
cumulation of CDCA8 are linked to poor prognosis 
for cancer patients and are important for growth, 
survival and the malignant nature of cancer [39]. 
DLGAP5 is a novel cell cycle-regulated gene that 
can inhibit the proliferation and invasion of hepa-
tocellular carcinoma cells [40], but its function in 
breast cancer cells is not clear. KIF2C, the mitotic 
centromere associated kinesin 271 (MCAK), is the 
most representative member of Kine-272-sin-13, 
and is correlated with lymph node metastasis and 
tumor stage [41]. KIF20A was localized to the Golgi 
apparatus and consisted of 890 amino acids [42]. 
Recent studies have shown that KIF20A, associ-
ated with breast caner, is a significant downstream 
target gene of Hedgehog (Hh) signaling, which was 
related to cancer cell proliferation, invasion, me-
tastasis, and autophagy [43]. NUSAP1, identified as 
an overexpression marker gene in invasive carci-
nomas, is a 55-KD vertebrate protein that plays a 
key role in spindle assembly and normal cell cycle 
progression [44,45]. However, the role of NUSAP1 
in invasive breast cancer has not yet been reported. 
Sperm-associated antigen 5 (SPAG5, also named 
DEEPEST, MAP126 or hMAP126), located on chro-
mosome 17q11.2, was up-regulated in M-phase 
cells and played a vital role in cell mitosis and 
cell cycle checkpoint regulation [46]. In the recent 
studies, SPAG5 contributed to disease progression 



Invasive key genes in breast cancer 2263

JBUON 2020; 25(5): 2263

in ER+ breast cancer subtypes [48]. UBE2C plays an 
important role in the ubiquitin-proteasome system. 
The ubiquitin-proteasome system precisely regu-
lates the cell cycle through proteasome-mediated 
protein degradation pathways in eukaryotes. High 
UBE2C expression is associated with a high grade 
of malignancy, low differentiation, high metastatic 
tendency, and poor patient survival in a wide range 
of solid tumors including breast cancer [47-49].
 In the present study, we explored the molecular 
mechanisms and biomarkers about aggressiveness 
in breast cancer by comprehensive bioinformatics 
analysis. 12 invasive key genes which were closely 
associated with prognosis were identified, includ-

ing CDK1, BIRC5, BUB1, CCNA2, CDC20, CDCA8, 
DLGAP5, KIF2C, KIF20A, NUSAP1, SPAG5 and 
UBE2C. These findings provided new insights into 
the study of breast cancer and promoted individual 
treatments.
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