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Summary

Purpose: Thyroid carcinoma (THCA) is one of the most 
common endocrine tumours with high morbidity world-
wide. Anaplastic thyroid cancer (ATC) is the most fatal 
and has the poorest prognosis of the four THCA types, 
as it lacks effective treatments. Early screening of ATC is 
problematic and so identifying ATC biomarkers is increas-
ingly crucial. 

Methods: We performed a systematic search of the thy-
roid transcriptome in the Gene Expression Omnibus (GEO) 
database and an integrative analysis of gene expression 
profiles. Moreover, we conducted a pathway enrichment 
analysis in ATC using the WEB-based GEne SeT AnaLy-
sis Toolkit. We identified the intersections of all the dif-
ferentially expressed genes (DEGs) between ATC and 
normal samples and DEGs between ATC and non-ATC 
samples in the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING). Finally, we used Cytoscape 

software to visualize the protein-protein interaction (PPI)
network. 

Results: Six gene expression datasets containing 131 thy-
roid cancer samples and 98 normal control samples were 
collected to identify the significant DEGs. A total of 1489 
DEGs were identified between ATC and normal samples, 
and 522 DEGs between ATC and non-ATC samples. ATC 
showed a greater association with the cell cycle. The Prin-
cipal component analysis (PCA) results revealed 222 genes 
with substantial contributions to the identification of ATC. 

Conclusion: Cell cycle plays a decisive role in the high 
mortality rate of ATC. TOP2A, NUSAP1, PBK, KIF15, 
CENPF, CEP55, CDK1, CCNB2, CDCA8 and CDC20 were 
identified as hub genes.

Key words: anaplastic thyroid cancer (ATC); cell cycle; 
biomarkers; differentially expressed genes (DEGs).

Introduction

 Thyroid carcinoma (THCA) is the most common 
endocrine tumour, with an increasing incidence 
in both developed and developing countries [1,2]. 
Most cases are pathologically differentiated thy-
roid cancers (DTC) with a good prognosis. Among 
DTC, papillary thyroid cancer (PTC) is the most 
common type, while DTC also includes follicular 
thyroid cancer (FTC) and medullary thyroid cancer 
(MTC). Anaplastic thyroid cancer (ATC) retains fol-
licular elements and thyroglobulin production, and 
is classified as poorly differentiated thyroid cancer 

(PDTC) [3]. These four types are classified based on 
the original cancer cell types and their appearance 
and characteristics. ATC is very rare, as it affects 
fewer than 2% of patients with thyroid cancer [4]. 
According to epidemiological investigations, ATC 
is arguably the solid tumour with the highest mor-
tality rate in humans and is characterized by rapid 
growth and metastasis in the nonremission clinical 
stage. ATC does not respond to most treatments 
and is almost always fatal [5]. The median overall 
survival (OS) of patients is only 3-5 months [6-8]. 

This work by JBUON is licensed under a Creative Commons Attribution 4.0 International License.
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The disease poses challenges for clinicians and re-
searchers to develop new systematic therapies [5]. 
In the management of ATC, multiple treatments, in-
cluding available surgery, remain the best strategy 
for improving survival and preventing suffocation-
induced death. The addition of chemotherapy has 
improved survival, but the prognosis remains poor 
[9]. To date, an effective treatment that prolongs 
the survival of patients with ATC is unavailable 
[10]. Therefore, appropriate comfort measures and 
emotional support should be provided to these un-
fortunate patients while they are urgently awaiting 
the development of a new treatment for this type of 
cancer [11]. Based on insights into the molecular, 
genetic, and biochemical changes that occur dur-
ing carcinogenesis, the focus of drug development 
has shifted from empirical therapy to treatment 
with specific molecular targets that cause tumours 
[12]. New targeted therapies aimed at blocking 
the activity of oncogenes in ATC that promote cell 
growth and oncogenic transformation are the most 
promising therapies currently being explored [13]. 
Hence, a new target of ATC is urgently needed [14].
However, currently, little is known about the exact 
molecular mechanisms underlying ATC progres-
sion [15]. The reintroduction of wild-type p53 into 
ATC cells has been reported to induce cell differ-
entiation, inhibit cell proliferation, and restore cell 
reactivity [16-18]. Both autophagy and AKT/mTOR 
signalling are also involved in ATC [19]. CDK7, PP-
P1R15A [20], and KAT5 [21] were identified as po-
tential biomarkers and therapeutic targets for ATC 
in two different studies. Nevertheless, most studies 
of ATC have been conducted in a single facility 
with a limited number of patients [22]. In other 
words, the molecular mechanism of ATC remains 
unclear.
 We performed this integrated analysis to un-
derstand why the mortality rate of ATC is par-
ticularly high among patients with THCA and to 
identify the key pathways and biomarkers of ATC. 
Differentially expressed genes (DEGs) are identified 
by folding changes of expression [23]. The identi-
fication of DEGs between ATC tissues and normal 

tissues along with the identification of DEGs be-
tween ATC tissues and non-ATC tissues is an effec-
tive method to find a new target for the treatment 
of thyroid cancer. Combined with existing micro-
array datasets in data warehouses, the reliability 
and universality of the statistical results can be im-
proved. Moreover, the statistical ability to produce 
more robust and accurate findings leads to more 
accurate judgments of DEGs [23,24]. A pathway 
enrichment analysis was performed to reveal the 
functional changes in ATC. ATC has more specific 
DEGs and shows a stronger association with the 
cell cycle than THCA and PTC, which corresponds 
to the extremely high mortality of ATC. Finally, by 
identifying hub genes, we enriched the study of 
the molecular mechanisms of ATC. Our study con-
tributes to guiding gene targeted therapy for ATC, 
which is important for prolonging the survival of 
patients with ATC. 

Methods 

Selection of microarray datasets for the meta-analysis

 A search was performed in the Gene Expression 
Omnibus (GEO) database from the National Center for 
Biotechnology Information (NCBI, http://www.ncbi.nlm.
nih.gov/geo/) with the keywords “thyroid cancer” and 
“thyroid neoplasms”. The inclusion criteria were: (1) all 
samples were obtained from Homo sapiens; and (2) more 
than three samples of normal thyroid were available. 
Studies were excluded if they met the following crite-
ria: (1) samples were obtained from peripheral blood; (2) 
dual-channel studies; (3) studies examining the miRNA 
expression profile and DNA methylation; (4) studies that 
lacked controls and analysed other cancers; (5) studies 
including datasets without literature traceability; and 
(6) studies of cell lines.

Meta-analysis of multiple microarray datasets

 We downloaded files (.CEL) containing microarray 
datasets of thyroid samples from the GEO database. We 
performed a meta-analysis of the gene expression pro-
files of six datasets using R statistical software (http://
www.r-project.org/) to reveal the differences in expres-
sion between THCA and normal samples and to identify 

Study Samples Cases/ controls ATC/PTC Country PMID Platform Chip type

GSE65144 25 12/13 12/0 USA 25675381 GPL570 HG-U133_plus_2

GSE33630 105 60/45 11/49 Belgium 22266856 GPL570 HG-U133_plus_2

GSE29265 49 29/20 9/20 Belgium 22828612 GPL570 HG-U133_plus_2

GSE6004 18 14/4 0/14 USA None GPL570 HG-U133_plus_2

GSE3678 14 7/7 0/7 USA 17296934 GPL570 HG-U133_plus_2

GSE3467 18 9/9 0/9 USA None GPL570 HG-U133_plus_2

Meta-analysis 229 131/98 32/99 - 16365291 - HG-U133_plus_2

Table 1. Characteristics of the individual studies retrieved from GEO for the meta-analysis
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a list of DEGs (up- or downregulated). Using the MAMA, 
mataMA, affyPLM, CLL and RankProd packages, we fi-
nally obtained p values and Z scores with the T-test and 
Z score methods. The Z score (threshold of the absolute 
value > 6) and p value (value < 1e-12) were used as the 
DEG screening criteria. In addition, we divided the thy-

roid cancer samples into two groups, including ATC and 
PTC samples, to perform the meta-analysis. Finally, we 
performed a meta-analysis of GSE29265 and GSE33630 
to reveal the differences in expression between ATC and 
non-ATC samples. We took the intersections of all the 
DEGs between ATC and normal samples and DEGs be-
tween ATC and non-ATC samples to identify them as 
hub genes.

Principal component analysis 

 Principal component analysis (PCA) has become 
a common method used to reveal the most important 
changes in proteins [26]. It is a widely used feature ex-
traction tool in the computer vision field [27]. We used 
it to verify the hub genes we identified to determine 
whether they do contribute differentiating between ATC 
and PTC, normal samples. PCA does not quantitatively 
predict performance, and thus the area under the Re-
ceiver Operating Characteristics (ROC) curve was also 
calculated for verification.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis

 We performed enrichment analyses based on the 
meta-analysis results to further investigate the biologi-
cal characteristics of the most significant DEGs. We con-
ducted a KEGG pathway enrichment analysis to identify 

Figure 1. Summary of the integrative analysis based on the GEO dataset. A: Flow chart of the data collection and 
analysis processes. B: Venn diagram showing the overlapping DEGs in THCA, ATC, and PTC constructed using Venny 
2.1.0. Specific genes in ATC accounted for a larger proportion, suggesting that a more specific pathway is involved in 
ATC development. C-D: The 222 genes clustered in ATC versus PTC and normal tissues in GSE33630 (C). Each column 
indicates a sample, and each row shows the expression level of a gene and GSE29265 (D). E: The 222 genes clustered in 
ATC versus PTC and normal tissues in GSE65144. The colour scale represents the raw Z score ranging from blue (low 
expression) to red (high expression). The change in the sample group was consistent with the change in colour levels. 
GEO: Gene Expression Omnibus; DEGs: differentially expressed genes; THCA: thyroid carcinoma; ATC: anaplastic thyroid 
cancer; PTC: papillary thyroid cancer.

Supplementary Figure 1. Scatter diagram of the p values 
and Z scores of THCA (A), ATC (B) and PTC (C) based on a 
p value < 1e-12 and |Z|> 6. The X axis represents p values, 
while the Y axis represents Z scores. Upregulated DEGs are 
located above the X axis, while downregulated DEGs are 
located below the X axis.
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the most significant DEGs using the WEB-based GEne 
SeT AnaLysis Toolkit (http://www.webgestalt.org/option.
php) and we drew a bubble chart to visualise the results.

Protein-protein interaction (PPI) network construction

 The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database is used to collect, 
score, and integrate all publicly available PPI informa-
tion and to supply this information by calculating pre-
dictions. For the enrichment analysis, STRING not only 
implements well-known classification systems such as 
GO and KEGG but also provides additional new clas-
sification systems based on high-throughput text min-
ing and hierarchical clustering based on the association 
network itself. The STRING resource is available online 
at https://string-db.org/ [27]. Furthermore, we used Cy-
toscape software to visualize the PPI network through 
the MCODE plug-in app and cytoHubba as an auxiliary 
tool.

Selection of hub genes and modules

 We employed Molecular Complex Detection 
(MCODE) software with a cut-off value=2, node score 

cut-off=0.2, k-core=2, and max depth=100 to select the 
most important PPI network clustering module. The 
twelve algorithms of the cytoHubba plug-in in Cy-
toscape software were used to identify hub genes, after 
which we conducted an analysis of the most significant 
module. We drew box plots to show the expression of 
hub genes in GSE33630 and GSE29265 that contain all 
ATC, PTC and normal samples to reveal the differen-
tial expression of hub genes in ATC, PTC and normal 
samples. In addition, we verified the consistency of 
the included studies by drawing the forest charts of 
hub genes expressed in each study. While PCA cannot 
quantitatively predict performance, so the area of ROC 
curve was drawn to reveal the efficacy of hub genes. 
We drew ROC curves of expressions of hub genes in 
datasets contains ATC samples except GSE65144 for 
it contains less samples which may not be well repre-
sented. We divided samples into ATC, PTC and normal 
groups to verify whether selected hub genes can suc-
cessfully distinguish ATC samples from PTC and nor-
mal samples. We evaluated the cross-validation perfor-
mance using average ROC area under the curve (AUC)
metrics. 

Figure 2. Verification of the efficacy and pathway analysis of DEGs identified in ATC. A: Bar charts of the up- and 
downregulated DEGs in ATC, PTC, and THCA. Blue represents the upregulated DEGs, while orange represents the down-
regulated DEGs. ATC had more upregulated DEGs than downregulated DEGs, while PTC and THCA showed the opposite 
results. B: Bubble chart of the top 8 KEGG pathways of DEGs identified in THCA, PTC and ATC. The pathways were 
sorted according to p values (p<0.001) for enriched DEGs. Compared with THCA and PTC samples, more pathways were 
enriched in ATC samples. Larger bubbles indicate that the pathway contained more DEGs, and a redder bubble indicated 
greater significance of the pathway. C-D: Scatter diagrams drawn after PCA; ATC samples were significantly separated 
from PTC and normal samples in GSE29265 (C) and GSE33630 (D). Red represents ATC samples, green represents PTC 
samples, and blue represents normal samples. Red points were separate from green and blue points. (E) Scatter diagram 
drawn after PCA; ATC samples were significantly separated from PTC samples in GSE65144.
PTC: papillary thyroid cancer; ATC: anaplastic thyroid cancer; THCA: thyroid carcinoma; DEGs: differentially expressed 
genes; PCA: principal component analysis.
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Results

Identification of DEGs through a meta-analysis

 According to our inclusion criteria, six GEO 
datasets from NCBI (GSE65144, GSE33630, 
GSE29265, GSE6004, GSE3678, and GSE3467) were 
collected (Figure 1A). We analysed 131 thyroid can-
cer samples and 98 normal thyroid tissue samples 
(Table 1). According to the Z score (threshold of 
an absolute value>6) and p value (value<10- 12),
we obtained 2048 DEGs in the comparison of 
THCA and normal tissues (supplementary Figure 
1A). In addition, we divided the 131 thyroid cancer 
samples into two groups, including 32 ATC and 
99 PTC samples. Compared with normal tissues, 
1489 DEGs were identified in ATC samples from 
3 datasets, including GSE65144, GSE33630, and 
GSE29265 (supplementary Figure 1B). Meanwhile, 
2445 DEGs were obtained in PTC samples from 
5 datasets (all except GSE65144) (supplementary 
Figure 1C). We identified 522 DEGs after a meta-
analysis comparing GSE29265 and GSE33630 with 
the same cut-off value.
 We further investigated the specific DEGs 
among THCA, ATC and PTC. Two hundred six shared 
genes were identified (Figure 1B). In addition, spe-

cific genes in ATC samples accounted for a larger 
proportion (885 genes, 59.4%), suggesting that a 
more specific pathway was involved in ATC devel-
opment. By drawing the bar charts, we observed 
more upregulated DEGs than downregulated DEGs 
in ATC while PTC and THCA showed the opposite 
results (Figure 2A). We combined 1489 DEGs in 
ATC and 522 DEGs we identified from GSE29265 
and GSE33630. We finally obtained 222 hub genes. 
The heatmap showed good consistency between 
the changes in different samples and changes in 
colour levels observed in GSE33630 (Figure 1C), 
GSE29265 (Figure 1D) and GSE65144 (Figure 1E).

KEGG pathway enrichment analysis

 To further investigate the functions of the 
DEGs, we classified DEGs into functional catego-
ries based on KEGG pathways to further investi-
gate their functions. At a cut-off of p<0.001, the re-
sults showed that ‘p53 signalling pathway’ (KEGG: 
04115) was significantly enriched in all THCA, PTC, 
and ATC samples, and it was also the most signifi-
cant pathway enriched in PTC and THCA. ‘Micro-
RNAs in cancer’ (KEGG: 05206) was also signifi-
cantly enriched in all THCA, PTC and ATC samples. 
Compared with THCA and PTC, the greatest enrich-

GO term Description Observed gene count Background gene count False discovery rate

Biological Process (GO)

GO: 0007049 cell cycle 58 1263 1.55E-28

GO: 0000278 mitotic cell cycle 43 628 1.49E-26

GO: 0051301 cell division 37 483 4.57E-24

GO: 1903047 mitotic cell cycle process 37 564 5.74E-22

GO: 0022402 cell cycle process 43 890 3.50E-21

Molecular Function (GO)

GO: 0008017 microtubule binding 13 253 2.20E-05

GO: 0015631 tubulin binding 14 344 5.16E-05

GO: 0008092 cytoskeletal protein binding 21 882 0.00019

GO: 0035173 histone kinase activity 3 16 0.0274

Cellular Component (GO)

GO: 0005819 spindle 30 322 1.33E-21

GO: 0015630 microtubule cytoskeleton 42 1118 4.01E-17

GO: 0000775 chromosome, centromeric region 19 189 5.05E-14

GO: 0000922 spindle pole 17 150 2.39E-13

GO: 0044430 cytoskeletal part 43 1547 2.39E-13

KEGG Pathways

hsa04110 cell cycle 9 123 5.31E-05

hsa04114 oocyte meiosis 7 116 0.0018

hsa04914 progesterone-mediated oocyte maturation 6 94 0.0034

hsa04115 p53 signalling pathway 5 68 0.0056

hsa00670 one carbon pool by folate 3 20 0.0149

Table 2. Outcome of the STRING analysis
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Figure 3. Expression of hub genes. A: Module obtained from the PPI network of DEGs using MCODE software. The colour 
of each gene that was closer to red indicates a higher degree, which was more effective. B: Box plots showing the expression 
of TOP2A, NUSAP1, PBK and KIF15 in ATC, PTC and normal tissues in GSE33630. The results revealed noticeably higher 
expression of TOP2A, NUSAP1, PBK, and KIF15 in the ATC samples than in PTC and normal samples. C: Forest chart of 
TOP2A expression in studies including ATC samples. The expression of the TOP2A gene is related to the poor prognosis 
of diverse tumours (HR=3.88, 95% CI=3.28-4.48, p<0.00001). D: The expression of the NUSAP1 gene is related to the poor 
prognosis of diverse tumours (HR=3.62, 95% CI=3.06-4.17, p<0.00001). E: The expression of the PBK gene is related to 
the poor prognosis of diverse tumours (HR=3.44, 95% CI=2.77-4.12, p<0.00001). F: The expression of the KIF15 gene is 
related to the poor prognosis of diverse tumours (HR=2.96, 95% CI=2.49-3.43, p<0.00001). G: The expression of HESS.
TOP2A: DNA topoisomerase II alpha, NUSAP1: nucleolar and spindle-associated protein 1, PBK: PDZ binding kinase, 
KIF15: kinesin family member 15, CENPF: centromere protein F, CEP55: centrosomal protein 55, CDK1: cyclin-dependent 
kinase 1, CCNB2: cyclin B2, CDCA8: cell division cycle-associated 8, CDC20: cell division cycle 20, P: p value. 
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ment of pathways was observed in ATC, of which 
‘cell cycle’ (KEGG: 04110) and ‘pathways in cancer’ 
(KEGG: 05200) were emphasized. The KEGG path-
way enrichment analysis of ATC samples indicated 
that ‘cell cycle’ (KEGG: 04110) was the most sig-
nificantly enriched pathway (p=2.32E-06, Figure. 
2B). ‘Pathways in cancer’ (KEGG: 05200) in ATC 

included the largest number of DEGs (518 genes, 
Figure 2B).
 We used outcome of PCA to verify the hub 
genes that we identified to determine whether they 
do contribute differentiating between ATC and PTC, 
normal samples. We drew scatter diagrams to visu-
alize the outcome. Red represents ATC samples, 
green represents PTC samples, and blue repre-
sents normal samples. ATC samples were signifi-
cantly separated from PTC and normal samples in 
GSE29265 (Figure 2C) and GSE33630 (Figure 2D), 
which means our hub gens contribute to distin-
guish ATC samples from PTC and normal samples. 
Figure 2E shows ATC samples were significantly 
separated from PTC samples in GSE65144.

Hub gene and module screen of the PPI network

 We took the intersection of the DEGs identified 
in ATC and the DEGs identified in GSE29265 and 
GSE33630 and performed a STRING analysis us-
ing its multiple proteins analysis in Homo sapiens 
to identify the hub genes and perform a module 
analysis. According to the STRING database, 138 
nodes and 1534 edges were included with PPI en-
richment p values<1.0e-16 (Table 2). 
 After importing the STRING analysis to Cy-
toscape and performing the module analysis, we 
identified only one cluster (score: 47.922), with 
which we performed a cytohub analysis by calcu-
lating the degree. The top 10 genes (DNA topoi-

Supplementary Figure 2. Box plots showing the expres-
sion of TOP2A, NUSAP1, PBK and KIF15 in ATC, PTC and 
normal tissues in GSE29265. Noticeably higher expression 
of TOP2A, NUSAP1, PBK and KIF15 was observed in the 
ATC samples than in PTC and normal samples.

Figure 4. Individual ROC curves for each class and micro- and macro-averaged ROC curves were shown in the same 
figure. A: ROC curves of expressions of hub genes in GSE29265. For the individual classes of expression of hub genes in 
GSE29265, ROC AUC values were 0.75, 0.72, and 1 for normal, PTC, and ATC, respectively. The micro- and macro-averaged 
ROC values were 0.83 and 0.85. B: ROC curves of expressions of hub genes in GSE33630. ROC AUC values were 0.87, 
0.82, and 0.93 for normal, PTC, and ATC, respectively. The micro- and macro-averaged ROC values were 0.87 and 0.88. 
Pink points represent micro- average ROC curve while blue points represent macro- average ROC curve. Azury lines 
represents ROC curve of class 0, orange represents that of class 1, and dark blue represents that of class 2. The area is 
closer to 1 represents hub genes are more meaningful. We can clearly conclude that in both GSE29265 and GSE33630, 
hub genes can distinguish ATC samples from PTC and normal samples.
ROC: Receiver Operating Characteristic. Class 0: normal samples versus ATC and PTC samples; class 1: PTC samples 
versus ATC and normal samples; Class 2: represents ATC samples versus normal and PTC samples. 
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somerase II alpha (TOP2A), nucleolar and spin-
dle-associated protein 1 (NUSAP1), PDZ binding 
kinase (PBK), kinesin family member 15 (KIF15), 
centromere protein F (CENPF), centrosomal pro-
tein 55 (CEP55), cyclin-dependent kinase 1 (CDK1), 
cyclin B2 (CCNB2), cell division cycle-associated 8 
(CDCA8) and cell division cycle 20 (CDC20) were 
identified as hub genes (Figure 3A). We chose the 
top 4 genes (TOP2A, NUSAP1, PBK, and KIF15) to 
draw box plots. Box plots show the result of these 
four genes in GSE33630 (Figure 3B) and GSE29265 
(supplementary Figure 2). Noticeably higher ex-
pression levels of TOP2A, NUSAP1, PBK and KIF15 
were observed in ATC tissues than in PTC tissues or 
normal tissues. By drawing a forest chart of TOP2A 
expression in studies including ATC samples (Fig-
ure 3C), our included studies showed good consist-
ency. We used a fixed model because the number of 
included samples was not excessive and our studies 
displayed good homogeneity. The upper and lower 
bounds of 95% CIs for RRs were all greater than 
1 and p values were far less than 0.00001, indi-
cating that our study is valid. In addition, other 
forest charts of NUSAP1, PBK and KIF15 expres-
sion are explicitly shown in Figure 3D, 3E and 3F, 
respectively.
 ROC curves typically feature true positive rate 
on the Y axis, and false positive rate on the X axis. 
This means that the top left corner of the plot is 
the ideal point whose false positive rate is zero 
and true positive rate is one. The resulting ROC 
curves are shown in Figure 4. Class 0 represents 
normal samples versus ATC and PTC samples, class 
1 represents PTC samples versus ATC and normal 
samples, and Class 2 represents ATC samples ver-
sus normal and PTC samples. The area is closer to 
1 implying hub genes are more meaningful. For 
the individual classes of expression of hub genes 
in GSE29265, ROC AUC values were 0.75, 0.72, 
and 1 for normal, PTC, and ATC, respectively. The 
micro- and macro-averaged ROC values were 0.83 
and 0.85. In GSE33630, ROC AUC values were 0.87, 
0.82, and 0.93 for normal, PTC, and ATC, respec-
tively. The micro- and macro-averaged ROC values 
were 0.87 and 0.88. We can clearly conclude that 
in both GSE29265 and GSE33630, hub genes can 
distinguish ATC samples from PTC and normal 
samples.

Discussion

 Thyroid cancer includes a variety of pathologi-
cal entities, mainly originating from follicles and 
parafollicular C cells in the thyroid gland [29]. By far 
the most common primary malignancy of the thy-
roid gland is the differentiated thyroid cancer [30]. 

 ATC accounts for only 1 to 2 percent of all 
thyroid cancers, but it is one of the deadliest tu-
mours in humans [31]. The tumorigenic process 
of the disease has not been completely elucidated 
[32]. We performed an integrative analysis of the 
6 microarray datasets selected by dividing them 
into THCA, ATC and PTC to explain this phenom-
enon. We included 131 thyroid cancer samples 
and 98 normal thyroid tissue samples, including 
32 ATC samples and 99 PTC samples. By perform-
ing a meta-analysis of the gene expression pro-
files using R statistical software, we identified a 
list of DEGs (up- or downregulated). These DEGs 
divided tumour samples from normal samples. 
Moreover, we performed a meta-analysis compar-
ing GSE29265 and GSE33630 to identify DEGs 
that distinguished ATC from PTC samples. Then, 
we performed a pathway enrichment analysis; we 
speculated that ATC has more specific genes than 
PTC and THCA. Meanwhile, the cell cycle is a very 
important contributor to the poor prognosis of ATC 
and may be the key pathway that corresponds to 
the high mobility of ATC. After taking the intersec-
tion of the DEGs in ATC and the DEGs identified in 
GSE29265 and GSE33630 to perform the STRING 
analysis, we found the module with the most genes 
connected to the cell cycle. After the cytoHubba 
analysis in the Cytoscape app that calculated the 
degree, TOP2A, NUSAP1, PBK, KIF, CENPF, CEP55, 
CDK1, CCNB2, CDC48 and CDC20 were identified as 
hub genes. 
 In some human malignancies, such as non-
small-cell lung cancer [33], hepatocellular carci-
noma [34] and head and neck cancer [35], cell cycle-
related proteins are overexpressed and contribute 
to the poor prognosis of patients. Seven hub genes 
(CDK1, CCNB2, BUB1B, CDC20, RRM2, CHEK1 and 
CDC45) were selected as biomarkers of ATC, and the 
enrichment analysis showed that these genes were 
primarily accumulated in the ‘cell cycle’ in the 
study by Ding and colleagues [36]. TOP2A, CDK1, 
CCNB1, VEGFA, BIRC5, MAPK1, CCNA2, MAD2L1, 
CDC20, and BUB1 were identified as hub genes of 
the PPI network in the study by Pan and colleagues 
of ATC [37]. 
 Our result was very important because our hub 
genes not only distinguish between ATC samples 
and normal samples but also between ATC sam-
ples and PTC samples. By identifying biomarkers 
of ATC, our study contributes to guiding gene-
targeted therapy for ATC, which is important for 
prolonging the survival of patients with ATC.
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