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Summary

It is of great interest for cancer therapy to elucidate 
and overcome the mechanisms that cancer cells develop to 
fight back the defense systems of the organism and anticancer 
treatments. The anticancer defense of the organism consists 
of four processes: 1. Activity of the cellular immunity; 2. 
Production of cytokines; 3. Activation of tumor-suppressor 
genes; 4. Blocking of the enzyme telomerase.

Several molecular mechanisms that cancer cells 
develop for survival are described: 1. Reactivation of the 
telomerase; 2. Suppression of apoptosis; 3. Elimination 
of effector cells; 4. Shedding of soluble receptors; 5. Neu-
tralization of tumor-suppressor genes; 6. Developing of a 
drug efflux pump; 7. Neoangiogenesis; 8. Overcoming and 

utilizing hypoxia; 9. Other rescue mutations; 10 Access- 
restriction factors.

Some new approaches for overcoming the survival 
mechanisms of cancer cells are briefly outlined.
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Introduction

Understanding the mechanisms that allow cancer 
cells to defeat the natural defenses of the organism and 
to survive anticancer treatments is of crucial importance 
for the development of a successful therapy. These 
mechanisms can only be uncovered at the molecular 
level. We shall discuss the problem of how cancer cells 
survive in the light of important data obtained in recent 
years and from the point of view of the cellular regula-
tory genetic networks controlling the metabolism and 
all cellular functions. 

Genes and genetic networks

To understand how the malignant phenotype arises 
we have to answer the question whether the changes in-
volved are a problem of genes only, or essentially, of gene 
regulation. Many data show that genes alone cannot de-
termine the phenotype: 1) It has been firmly established 
that heterologous gene transfer cannot change the phe-
notypic features of the host. Human genes, for instance, 
have been transferred to mice, to yeast and to bacterial 
cells, where they remain fully active without affecting 
the morphological features of these organisms; 2) Genes 
controlling basic cellular functions such as cell cycle, 
embryonic development, transcription, housekeeping 
genes, histone genes, display a high degree of evolu-
tionary conservation [1]; 3) In terms of informational 
content, humans and chimpanzees for example are 99% 
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identical. It is clear that additional information is needed 
to translate a set of genes into a given phenotype.

Several authors have already suggested that the 
important factor is the “architecture” of the regulatory 
system [2-4]. It is essential to point out the integrat-
ing function of the genome: genes do not function 
as separate units but are interconnected in regulatory 
circuits – genetic networks –, which have been formed 
in evolution to control the metabolic program of the 
cell, and all its other functions [1,5]. These networks 
are based on specific regulatory genes which code for 
proteins (trans factors) that bind to specific DNA se-
quences (cis elements), such as promoters, silencers, 
enhancers, upstream activating sequences [6]. 

The genetic network of a given species has been 
established in the evolution as a functionally stable 
structure. The intergenic interactions depend on many 
parameters which determine the phenotype and the func-
tional state of the cell-such as the equilibrium constants 
of reversible interactions between regulatory proteins 
and DNA, the permeability of cellular membranes, 
cellular configurations, etc. All of these parameters 
ultimately depend on DNA sequences. Mathematical 
analysis of these DNA/protein interactions - based on 
the law of mass action - shows that the genome is a non-
linear system. This means that changing its parameters 
within certain limits does not cause any significant 
perturbations. However, even very small alterations 
of the parameters outside these limits may drastically 
alter the properties of the system [1,5,7]. For a cell this 
would lead to only three possible outcomes: cellular 
death, arrest of cellular proliferation (lucky events) or 
the emergence of a new, malignant phenotype. 

Anticancer defense systems of the organism

Under the effect of different factors, DNA often 
acquires mutations that affect the genetic network. In 
most cases this leads to cellular death but some give 
rise to malignantly transformed cells. The organism has 
developed defense systems to eliminate such cells. These 
systems include mainly four processes: 1. Cellular immu-
nity; 2. Production of cytokines; 3. Activation of tumor 
suppressor genes; 4. Blocking the enzyme telomerase.

1. Activity of the immune system - cellular immunity

This defense is mounted by special effector cells 
which kill, lyse and phagocytose foreign pathogens 
and malignantly transformed cells. The effector cells 
are represented by several species:

a) Natural killer cells (NK); b) Lymphokine-
activated killer cells (LAK); c) Macrophages; d) An-
tigen-presenting cells (AP-cells, also called dendritic 
cells-DC); e) CD4+ T-helper lymphocytes; f) CD8+ cy-
totoxic T-lymphocytes; g) Tumor-infiltrating leukocytes 
(TIL); h) Polymorphonuclear leukocytes; i) Antibody-
dependent cytotoxic cells (ADCC); j) Thrombocytes 
which can also be stimulated to cytotoxic activity [8].

Two types of T-lymphocytes, Th1 and Th2, play an 
important role in the immune activity. They exert mutual 
repression upon each other: Th1 cells produce cytokines 
that stimulate cellular immunity and repress Th2 cells, 
while the latter activate humoral immunity and repress 
Th1 cells (Slide 1). Depending on many external and in-
ternal factors the CD4+ lymphocytes respond to antigens 
by developing Th1 or Th2 phenotype. This phenotype 
depends also on the balance between interleukin (IL)-12 
and IL-4, the former stimulating a Th1, while the latter a 
Th2 response. Zn deficiency [9] and poisoning with Pb 
[10] shift the response from Th1 to Th2. Prostaglandin 
E2 also decreases Th1 activity [11].

It should be stressed that Th1 cells possess sev-
eral activities directed towards eliminating tumor cells: 
1. Antiproliferative; 2. Tumorocidal; 3. Activation of 
cellular immunity; and 4. Modulation of gene expres-
sion. All of them are critical for the anticancer defense, 
which is therefore favored by all factors inducing a 
Th2 to Th1 shift.

1.1. The antiproliferative activity is due to:
a) Inhibition of oncogene expression, e.g. of c-

Myc, of c-erbB-2 etc. [12, 13].
b) Induction by interferon (IFN) γ of the enzyme 

indolamine-2-3-dioxygenase (IDO) [14], that destroys 
tryptophan, thus leading to tryptophan starvation.

c) Inhibition of transferring receptors expression 
[15] causing iron deficiency. 

d) Induction of the kinase inhibitor p27, thus 
blocking the cell cycle at the end of G1 [16, 17] 
(Slide 2). 

Slide 1. Relationship between the two types of thymocytes, 
Th1 and Th2, responsible for cellular and humoral immunity, 
respectively.
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e) Inhibiting the synthesis of growth factors (for 
instance IL-2, which is the growth factor of multiple 
myeloma) [18]. 

f) Stimulation of fibronectin synthesis [19], 
which is inversely correlated with cell proliferation. 

g) Inhibition of DNA polymerase [20]. 
h) Induction of calcium/calmodium-dependent 

enzymes and death-associated proteins (DAP), leading 
to apoptosis [21].

1.2. The tumorocidal activity is dependent on the 
antiproliferative activity on one hand, and on the other 
on the cytotoxicity of effector cells.

1.3. The immunomodulatory activity consists of:
a) Increasing the synthesis of class I and inducing 

the synthesis of class II antigens of the major histocom-
patibility complex (MHC I: HLA-A,B,C and MHC II: 
HLA-DR, DQ, DP).

b) Stimulation of Th1 and suppression of Th2 
proliferation.

c) Activation of co-stimulatory molecules in the 
cell membrane – ICAM-1 (CD54), LFA-3 (CD58), B7-
1 (CD80), B7-2 (CD86), which ensure the adhesion of 
effector cells to the target cells in order to accomplish 
the cytotoxic effect.

d) Activation of some components of the comple-
ment (C2, C4, factor B) [22], that increase the anti-
body-dependent cytotoxicity of macrophages.

2. Production of cytokines

These are proteins that fulfill intercellular commu-
nications in the same tissue or among different tissues. 
Although structurally different, they all affect cellular 
activity. At present the following groups are known:

a) Interferons (IFN-α, IFN-β, IFN-γ, IFN-ω). 
b) Interleukins (IL-1 to IL-18). 
c) Colony-stimulating factors: granulocyte (G-

CSF), macrophage (M-CSF) and granulocyte-
macrophage (GM-CSF). 

d) Growth factors. 
e) Transforming growth factors (TGF-α and 

TGF-β). 
f) Fibroblast growth factors - acid and basic (aFGF 

and bFGF). 
g) Tumor necrosis factors (TNF-α and TNF-β). 
h) Chemokines – a family of proteins playing a 

key-role in T-helper cells migration.

3. Activation of tumor suppressor genes

During the recent 15 years several genes have 
been discovered that can suppress carcinogenesis. 
One of the most important tumor suppressor genes is 
the gene coding for the protein p53. For many years 
it was considered to be an oncogene since more than 

Slide 2. Schematic representation of the processes leading to a normal cell cycle or to blocking 
DNA replication.
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50% of human tumors were found to be associated 
with mutations in this gene. However, p53 was shown 
subsequently to be involved in protecting the genome 
from inheriting damaged DNA and was called “guard-
ian of the genome” [23,24]. This gene is induced by 
many factors that damage DNA (Slide 2). The cell cycle 
is normally accomplished with the help of a cyclin-de-
pendent kinase (cdk) which hyperphosphorylates the 
retinoblastoma protein pRb and thus removes its inhibi-
tory effect on DNA replication. When DNA is damaged, 
production of p53 induces the synthesis of the kinase 
inhibitor p21, the phosphorylation of pRb is prevented 
and DNA replication is blocked. The molecular machin-
ery of the cell is directed towards DNA repair (Slide 
2). By arresting the cell cycle until DNA is repaired, 
and in some cases inducing apoptosis, p53 fulfills its 
most important function – to prevent the damaged DNA 
from being inherited by daughter cells, which opens the 
possibility of malignant transformation.

4. Blocking the enzyme telomerase [25,26]

The ends of chromosomes contain hundreds of 
copies of repeated nucleotide sequences called telo-
meres whose main function is to prevent chromosome 
fusion and to protect the chromosomes from exonu-
cleolytic attack. Telomeres cannot be fully replicated 
by the same enzymes that replicate DNA. To achieve 
this process a special enzyme is employed, called 
telomerase – a RNA-protein complex functioning as 
a reverse transcriptase. Telomerase RNA is comple-
mentary to the 3’single-stranded overhanging G-rich 
telomeric strand at the end of the chromosome. During 
DNA replication the telomerase binds to this end and 
a complementary telomeric sequence is synthesized. 
The second strand is synthesized by a cell polymerase. 
As a result the telomeric DNA is complementary to 
the RNA component of the telomerase.

Telomerase is normally active during embry-
onic development, while in the adult organism it is 
inactivated. Therefore, during each cell division the 
chromosomal ends are shortened until important genes 
are affected and the cell dies. In this way a normal 
adult cell is programmed to undergo a limited number 
of cell divisions only.

Mechanisms of cancer cells overcoming the anti-
cancer defense. The role of rescue-mutations

As discussed above, malignant cells have a 
destabilized genetic network leading to a disturbed 
regulatory system and altered gene interrelations, 

with some active genes repressed and some silent 
genes activated. Due to the emergence of an unstable 
genetic network further changes take place mani-
fested as tumor progression. The various mutations 
that occur affect different cellular targets including 
membrane receptors, metabolic pathways and the 
nucleus. They make the cellular population very het-
erogeneous and subject to selection pressure under 
the effect of internal and external factors including 
chemotherapeutics. In this way some malignant cells 
survive and emerge as resistant to anticancer therapy. 
The following self-rescuing properties of malignant 
cells are well known:

1. Reactivation of telomerase

In cancer cells telomerase is reactivated ensur-
ing unlimited number of cell divisions [27-29]. The 
mechanism of this reactivation is not known, neither is 
the mechanism of its inhibition. It seems that telomer-
ase-independent mechanisms also exist since in some 
human cell lines telomere maintenance is observed in 
the absence of telomerase activity [25]. 

2. Suppression of apoptosis

Apoptosis is sort of programmed cell death. 
Preventing apoptosis is a powerful mechanism open-
ing the way to carcinogenesis. There is an essential 
difference between the passive process of necrosis 
and that of apoptosis [30-32]. The latter is an active 
process starting with the synthesis of cell-cycle specific 
proteins, but ending with cellular death and showing 
specific morphological features. It is considered as an 
abortive cell cycle [33-38]. 

Apoptosis is particularly important for cancer 
therapy [39,40]. Anticancer factors kill cancer cells 
by apoptosis. This process is initiated by the interaction 
between specific cellular receptors and their ligands 
(e.g. FasL] or under the effect of various physical and 
chemical agents (ionizing radiations, antimetabolites 
etc.). At the same time there is a family of transcrip-
tion factors in the cytoplasm, known as nuclear factors 
kappa B (NFκB), which enter the nucleus and induce 
proteins inhibiting the apoptotic process [41-43]. Also 
found in the cytoplasm is an inhibitor IκB [44-46] 
which binds and partially traps NFκB, as shown in 
Slide 3. As a result, the cell is at the boundary between 
life and death [47]. Depending on the strength of in-
teraction between NFκB and IκB, the cell may survive 
or may enter the apoptotic pathway.

Thus NFκB is a survival factor for cancer cells 
and, therefore, a target for cancer therapy. Breast cancer 
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cells are a good example of survival due to constitutive 
expression of NFκB, which prevents their apoptotic 
death, unlike normal mammary epithelial cells which, 
under the same conditions, die of apoptosis [48,49]. 
During tumor progression the sensitivity of cancer cells 
to the apoptotic ligand decreases [50].

3. Elimination of effector cells

This defeats cellular immunity and is achieved 
by cancer cells in several ways:

a) By the expression of ligands which induce apop-
tosis in effector cells. For example, the expression of 
FasL on the membrane of tumor cells. This ligand binds 
to the Fas receptor, normally expressed on the surface of 
TILs, and induces their apoptotic death [51,52]. 

b) By secreting factors suppressing the locomo-
tion of effector cells and their penetration through 
the extracellular matrix, preventing their migration 
towards the target cells [53].

c) By expression proteins that suppress the lysis 
of cancer cells by LAK [54].

4. Shedding of soluble receptors

In some cancer cells proteases are expressed 
which cleave off the extracellular domain of recep-
tors or other surface antigens (e.g. sIFNγR, sICAM-1, 
sFas etc.), releasing them into the surrounding medium 
where they are able to bind the corresponding cyto-

kines or ligands, thus blocking the immune reaction 
or apoptosis [55-57]. 

5. Neutralization of tumor suppressor genes

Many virus-induced tumors owe their emergence 
and survival to products that bind and neutralize p53. 
Such are the large T antigen of SV-40, the 55kD pro-
tein of the E1B adenoviral gene, the IE84 protein of 
CMV, the protein X of hepatitis B virus, and also the 
products of some eukaryotic genes such as the heat 
shock protein 70 and the MDM2 gene [24]. 

6. Development of a detoxicating efflux pump [58]

Some tumors show an initial response to therapy, 
but nevertheless subsequent relapses occur frequently. 
The recurrent tumors and their metastases are refrac-
tory to further treatment even to protocols involving 
multiple drugs aimed at different cellular targets. This 
multidrug resistance (MDR) is a widely studied cel-
lular transport-mediated resistance. The classical MDR 
is characterized by:

a) Cross-resistance to chemically-unrelated 
drugs. 

b) Decreased intracellular drug accumulation. 
c) Overproduction of plasma membrane glycopro-

teins due to overexpression of the mdr gene. 
d) Reversal to drug sensitivity by MDR modula-

tors.

Slide 3. Induction and blocking of apoptosis.
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The most widely studied glycoproteins involved 
in MDR are the P-glycoprotein (Pgp), the MDR resis-
tance-associated protein (MRP1) and the lung-resis-
tance-related protein (LRP). 

All these glycoproteins are localized in the cell 
membrane and contain binding sites for the toxic 
agents. Using the energy of ATP they expel the toxic 
substances out of the cell. MDR modulators block 
the drug efflux by a competitive or non-competitive 
way, i.e. by binding the modulators either to the same 
drug-binding sites, or to other sites causing alosteric 
changes inhibiting drug binding.

7. Neoangiogenesis

The formation of new blood vessels is necessary for 
tumor growth and for the permanent tissue reorganization 
that takes place in the tumor. This depends on the release 
of the vascular endothelium growth factor (VEGF) [59] 
which ensures the tumor survival. Some authors identify 
the enzyme thymidine phosphorylase with VEGF [60]. 
The life or death of the tumor cells is determined by the 
balance between the angiogenic factors and the anti-an-
giogenic chemokine IP-10 [61, 62].

8. Overcoming and utilizing hypoxia

In 1970 Folkman put forward the idea of elimi-
nating cancer cells by inhibiting angiogenesis, thus 
causing hypoxia [63]. Clinical data, however, did not 
confirm this prediction. Recently it was elucidated 

how cancer cells counteract hypoxia [64-68]. It was 
found that hypoxia induced proteins - hypoxia-in-
duced factors (HIF) – that led to induction of VEGF 
and activated the transcription of the protooncogene 
met which increased the synthesis of the membrane 
receptor c-Met, a tyrosine kinase. The latter binds the 
hepatocyte growth factor (HGF) produced by the nor-
mal cells of the neighboring stroma and enhances the 
invasiveness and metastatic properties of the malignant 
cells (Slide 4). HGF also stimulates neoangiogenesis, 
an effect mediated by a platelet-activating factor (PAF) 
synthesized by macrophages [69].

Hypoxia also induces heat-shock proteins, sup-
presses apoptosis by activating NFκB and increases 
the radio resistance of malignant cells. It makes these 
cells resistant to the antiproliferative activity of inter-
ferons [70]. 

As a result, instead of killing the malignant 
cells, hypoxia makes them more aggressive, more me-
tastatic and more resistant to anticancer treatments. 
This weakens the hope of eradicating tumor cells by 
anti-angiogenesis, although such an approach is under 
clinical trial.

9. Other rescue mutations

a) In hematological malignancies great quantita-
tive variations are observed in the expression of IFNγ 
receptors. Of 77 different malignant types studied, 6 
lymphoid leukemia types did not express these recep-
tors that made them insensitive to this cytokine [71].

Slide 4. Effects of hypoxia on cancer cells.
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b) The metabolic chain inducing IDO by IFNγ 
is interrupted in some cancer cells, tryptophan can not 
be degraded, and the cells survive [72].

c) A metabolic pathway is interrupted by muta-
tions in the tyrosine kinase JAK-1, that makes the ma-
lignant cells insensitive to all three types of IFN [73].

10. Access-restriction factors

These are either natural barriers or restrictions 
induced by cancer cells.

a) A typical case of natural barrier is the blood/
lung barrier – the inability of parenterally applied im-
mune interferon to penetrate lung alveoli [74-76].

b) Most of the cells within a large tumor mass are 
also inaccessible to the cellular immune system.

c) Inhibited expression of ICAM-1 prevents 
the contact between cytotoxic leukocytes and target 
malignant cells.

d) Inhibiting TILs locomotion and their penetra-
tion through the extracellular matrix also prevents their 
contact with malignant cells [53]. 

e) Disturbance in the signaling pathways of 
kinases KKI and CK2 increases their level, leading 
to elevated NFκB seen in primary human mammary 
tumors [77].

f) Mutations in the kinase inhibitor p27 disturb 
its relations with cdk2 and eliminate the block of the 
entry into S phase [16, 17].

g) Mutations in the metabolic pathway of IL-2 
prevent the induction of LAK activity [78]. 

Overcoming the survival mechanisms of can-
cer cells

For cancer therapy it is important on one hand 
to suppress the mechanisms rescuing cancer cells, 
and on the other to make cellular immunity more 
effective in killing the heterogeneous malignant cell 
population.

1. Suppressing mechanisms

a) Inhibition of the survival factor NFκB would 
be a potential way for improving cancer therapy [79]. 
A mutant of IκB (a super-repressor) has been found, 
which strongly binds NFκB and irreversibly leads to 
apoptosis [46].

b) In various tumors apoptosis was induced by 
vector-dependent over-expression of the CID gene 
that codes for a DNA-binding protein activating p53 
[80].

c) The detoxicating function of cancer cells can be 
eliminated by a number of MDR modulators [58].

d) The receptor profile of malignant cells can 
be also modified. Doxorubicin for example enhances 
the expression of both Fas and FasL so that the malig-
nant cells mutually kill themselves by apoptosis [52]. 
Methotrexate also induces the expression of FasL in the 
membrane of leukemia cells and, due to the presence 
of Fas, the malignant cells die of apoptosis [81].

e) It would also be rational to use factors that shift 
the thymocyte profile from Th2 to Th1 phenotype in 
order to strengthen the immune reaction.

f) An approach to the problem of hypoxia would 
be to combine anti-angiogenesis with suppression of 
genes responsible for the synthesis of VEGF and pro-
teins such as Met.

2. Effective cellular immunity. Anticancer vaccines

The most difficult problem in cancer therapy 
arises from the numerous mutations creating a het-
erogeneous cell population of malignant cells. In order 
to obtain effector cells able to attack all these differ-
ent cells the attention recently has been focused on 
elaborating anticancer vaccines [82, 83]. To this end 
antigen-presenting (AP) cells (called dendritic cells, 
DC) are loaded ex vivo with all different tumor antigens 
which they present to the effector cells, thus creating 
tumor-specific toxic T-lymphocytes. The latter are in-
troduced into the lymphoid organs of the individual of 
their source. Several antigen-loading procedures have 
been developed. An excellent source of all various tu-
mor antigens are apoptotic cancer cells [84-86]. This 
approach has proved to be efficient in mice [87] and 
such vaccines are already under clinical trials [88].
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