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Summary

The current treatment of chronic myelogenous leukemia 
(CML) is one of the most successful examples of molecularly 
targeted therapy in cancer. The identification of the fusion 
oncogene BCR-ABL allowed the discovery of small molecule 
inhibitors of its tyrosine kinase activity which, in turn, have 
literally revolutionized the treatment of this disease.

However, large part of a successful clinical manage-

ment of CML relies on appropriate diagnosis, molecular 
monitoring and identification of mutations potentially leading 
to drug resistance. These issues are discussed here together 
with an overview on how patients treated with tyrosine kinase 
inhibitors should be monitored.
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Introduction

CML is a hematopoietic stem cell (HSC) disor-
der accounting for about 15-20% of all leukemias of 
the adult [1,2]. The main hematological features are 
represented by an increase in the number of circulating 
mature granulocytes and their precursors and, subse-
quently, by a secondary evolution in acute leukemia. 
Additionally, in over 95% of CML cases, it is possible 
to recognize a karyotype abnormality resulting from a 
reciprocal translocation involving chromosome 9 and 
chromosome 22, t(9;22), termed Philadelphia chromo-
some (cr. Ph) [3,4]. This balanced translocation leads 
to a fusion gene, the product of which is the constitu-
tively active protein-tyrosine kinase, BCR-ABL. The 
biochemical signal transduction pathways stimulated 
by BCR-ABL kinase activity are responsible for Ph+ 
CML oncogenesis [5-13].

Several BCR-ABL variants have been reported. 
In general, while in all chimeric proteins the breakpoint 
within ABL gene is consistently located upstream of 

exon 2 (a2), the breakpoint in the BCR gene varies in its 
localization [14]. Accordingly, different BCR-ABL iso-
forms with different molecular weights result [15]. A ma-
jor breakpoint cluster region (M-bcr) and a minor break-
point cluster region (m-bcr) have been defined [16]. The 
M-bcr maps to a 5.8 Kilobase (Kb) area spanning exons 
12 through 16. The resulting fusion transcripts with ABL 
generate a 210-kDa protein named p210 which is the 
most common BCR-ABL form, being observed in 99% 
of the CML patients and in one-third of Ph-positive B-
cell acute lymphoblastic leukemia (Ph+ B-ALL) [17]. m-
bcr localizes to a 54.4-kb area sited downstream of exon 
1. It gives rise to a fusion transcript with ABL named 
p190. p190 is rarely observed in CML, but is the most 
frequent BCR-ABL isoform in Ph+ B-ALL. Finally, 3’ 
breakpoints downstream of BCR exon 19 have also been 
described and they give rise to a 230-kDa fusion protein 
(p230 BCR-ABL), which is typically found in chronic 
neutrophilic leukemia (CNL) [18].

The oncogenic potential of BCR-ABL derives 
from its capacity to activate intracellular signalling 
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cascades that lead to uncontrolled cell proliferation, 
altered cell adhesion, and apoptosis inhibition [19,20]. 
Increased susceptibility to proliferate derives from 
BCR-ABL’s capacity to activate mitogen activated 
protein kinase (MAPK) and JAK/STAT signalling; the 
interaction with SRC is responsible for increased cell 
motility; resistance to apoptosis is thought to result 
from BCR-ABL-mediated activation of phosphati-
dylinositol-3-phosphate kinase (PI3K) and thereby of 
Akt (Figure 1). Consistent with these molecular sequel-
ae, BCR-ABL was shown to transform hematopoietic 
progenitor cells in in vitro and in vivo studies [21-23]. 
Recent reports identified a role for other signalling cas-
cades in CML biology, including Hedgehog, Wnt and 
Ikaros, suggesting that pharmacological inhibitors of 
these pathways may find application in the treatment of 
CML [24-27]. Finally, also micro RNA (miRNA) regu-
lation appears to apply to CML biology since miR-203, 
which would normally suppress BCR-ABL expression, 
is either mutated or epigenetically silenced in CML. In 
the latter type of condition, demethylating drugs such 
as 5-azacytidine and 4-phenylbutyrate were shown to 
restore miR-203 and to thereby decrease BCR-ABL 
expression and proliferation rate of Ph+ human CML 
cell lines [28,29]. The definition of the molecular struc-
ture of BCR-ABL tyrosine kinase domain has led to 
development of potent and specific tyrosine kinase in-
hibitor (TKIs) [30,31]. TKIs such as imatinib mesylate 
(Gleevec™, Novartis) induce apoptosis in CML but 
not in healthy tissues, which is thought to result from 
addiction of CML cells to BCR-ABL signalling. Im-
portantly, although TKIs do induce disease remissions 
in most CML patients, they are not curative because 
of their incapacity to eradicate CML stem cells. In this 
respect, the only curative approach for CML remains 

allogeneic bone marrow/peripheral blood stem cell 
transplantation [32,33]. Moreover, acquired resistance 
to imatinib is commonly observed and requires the 
prompt introduction of other TKIs that retain activity 
against BCR-ABL [34,35]. Therefore, a timely and ac-
curate follow-up is crucial for the management of CML 
and for effective therapeutic decisions [36-44].

This review discusses the role of disease monitor-
ing in the management of CML patients, the methods 
used, and the mechanisms of resistance to TKIs. The 
current recommendations on how patients treated with 
imatinib should be monitored are also summarized.

CML monitoring

Routine CML diagnostics largely relies nowa-
days on traditional blood cell count, cytogenetic anal-
ysis (standard karyotype with or without fluorescence 
in situ hybridization-FISH), and real time quantitative 
polymerase chain reaction (RT-Q-PCR) for BCR-ABL 
messenger RNA (mRNA). These tests allow defining 
the hematological, cytogenetic, and molecular response 
to treatment, respectively [45,46].

The hematological response to treatment is as-
sessed by peripheral blood cell counts and by spleen 
size, and is classified as:
1. Complete hematological response (CHR): normal-

ization of peripheral blood counts with no immature 
blood cells and with disappearance of any sign of 
disease

2. Partial hematological response (PHR): presence of 
immature blood cells and/or persistent splenomegaly

The next level of response is the cytogenetic 
one (CyR), defined as a decrease in the number of Ph+ 
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Figure 1. Molecular pathways involved in onco-
genic BCR-ABL signaling. Schematic view of the 
signal transduction pathways in cells transformed 
by BCR-ABL. Multiple pathways are activated, in-
cluding the RAS-mitogen activated protein (MAP) 
kinase signaling cascade, Phosphatidyl inositol 3’ 
kinase (PI3’K), Jak/Stat, and Myc. The net effects 
of these molecular alterations include inhibition 
of apoptosis, increased cell proliferation, aberrant 
interaction with the bone marrow stroma, and ge-
netic instability. Many of the molecules involved 
in BCR-ABL-mediated cell transformation are 
potential drug targets.
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metaphases in a bone marrow aspirate (using ≥ 20 
metaphases). This is categorized as :
1. Complete cytogenetic response (CCyR): 0% Ph+ 

metaphases
2.  Partial cytogenetic response (PCyR): 1-35% Ph+ 

metaphases
3. Minor cytogenetic response: 36-65% Ph+ meta-

phases
4. Minimal cytogenetic response: 66-95% Ph+ meta-

phases
CCyR or PCyR configure a major cytogenetic 

response (MCyR).
Finally, residual leukemia cells (minimal resid-

ual disease, MRD) can be detected using RT-Q-PCR. 
Particularly, the molecular response is defined as a de-
crease of the BCR-ABL to control gene transcript ratio 
according to the International Scale (IS) (see below):
1. Complete molecular response (CMR): undetectable 

level of chimeric transcript 
2. Major molecular response (MMR): reduction in 

transcript levels of at least 3-log from standard 
baseline level (which represent 100% on the Inter-
national Scale) or ≤1%.

Cytogenetics and FISH

The Ph chromosome can be detected by standard 
cytogenetic techniques in the vast majority of patients 
[47]. In patients who are cytogenetically Ph chromo-
some negative (Ph–), molecular techniques such as 
FISH and RT-Q-PCR may be useful in detecting BCR-
ABL. Cytogenetic analysis is typically performed by 
chromosome banding of at least 20 bone marrow cells 
in metaphase allowing to identify the t(9:22) transloca-
tion [48]. In addition, cytogenetics also allows to define 
any additional chromosomal abnormality (i.e. addi-
tional Ph chromosome, isochromosome 17q, trisomy 8, 
or trisomy 19), thereby providing additional prognostic 
information. Baccarani et al. recommend that, at diag-
nosis, two cytogenetic analyses are performed in order 
to increase the sensitivity of the method. Furthermore, if 
less than 20 metaphases are visualized, the cytogenetic 
analysis should be validated by FISH or by RT-Q-PCR 
(see below) [49]. Importantly, in 5% of CML cases 
no cytogenetically-detectable Ph chromosome can be 
demonstrated, since in these cases (about 2-3% of all 
CMLs) the BCR-ABL fusion oncogene derives from a 
submicroscopic genetic fusion. In these cases, FISH or 
RT-Q-PCR will demonstrate the presence of the specific 
genetic abnormality.

Traditional FISH uses 5’ BCR and 3’ ABL fluores-
cent probes of different colors while more recent FISH 

reagents use 3-4 probes (D-FISH). Such probes can de-
tect the variant translocations leading to Ph chromosome 
formation and are also associated with low false posi-
tive rates [50-55]. Interphase or hypermetaphase FISH 
can be performed on peripheral blood specimen or bone 
marrow aspirates, respectively. Interphase FISH is ap-
plicable to a larger population of cells since does not re-
quire cycling cells. On the other hand, this technique is 
associated with a background signal greater than 1-5% 
(depending on the specific probe used in the assay) [56-
59]. Hypermetaphase FISH is applicable only to divid-
ing bone marrow cells [60]. This approach is more sensi-
tive and can analyze up to 500 metaphases at a time.

Usually, FISH results correlate with traditional 
cytogenetic analysis and with RT-Q-PCR results, thus 
remaining a convenient and sensitive diagnostic tool 
(see below). 

PCR-based approaches to CML monitoring

Nested reverse transcriptase PCR can detect one 
CML cell in a background of ≥ 100.000 normal cells 
[61]. However, it remains a purely qualitative assay 
which is only capable of demonstrating the presence or 
absence of CML cells. Nested-PCR is normally only 
used to confirm the achievement of CMR. RT-Q-PCR 
methods are less sensitive than qualitative PCR (by 0.5-1 
order of magnitude) but they have the advantage of de-
termining the actual percentage of BCR-ABL transcripts 
and can therefore be used to track changes in the number 
of leukemic cells over time [62-66]. Currently, RT-Q-
PCR for BCR-ABL is the recommended approach for 
routine follow-up of CML patients and is considered the 
gold standard test for routine therapeutics decision.

The BCR-ABL transcript levels are expressed as 
a percentage ratio of BCR-ABL compared to ABL tran-
scripts. ABL acts as control gene to compensate for vari-
ations in the quality of the RNA and for differences in the 
efficiency of the reverse transcription reaction. The last 
years have seen numerous efforts to standardize the mo-
lecular approaches to CML monitoring as well as their 
interpretation criteria. In order to harmonize the results 
across laboratories worldwide, a standard pre-treatment 
baseline value for each laboratory was established. Thus, 
a molecular response is defined by reductions from an 
absolute baseline (common to all) rather than a relative 
baseline (individualized). This ensures that patients with 
the same level of response have the same degree of re-
sidual disease. Additionally, under- or over-estimation 
of the extent of response due to individual variations is 
avoided by using a common standard baseline. Accord-
ing to the international reporting scale (IS) the absolute 
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BCR-ABL value to define major molecular response 
is standardized at 0.1% (or 3 log) reduction from the 
laboratory-specific pretreatment standard baseline [67-
69]. A value of 1.0% is approximately equivalent to the 
achievement of a CCyR and a CMR is achieved when 
transcripts are undetectable [70-72].

Because of its high sensitivity, CML monitoring 
by RT-Q-PCR enables to define an early loss of response 
once CCyR has been achieved [73,74]. Additionally, 
early molecular monitoring after initiation of treatment 
helps to identify patients at higher risk of relapse after 
pharmacological treatment onset as well as after alloge-
neic bone marrow transplantation [75-77].

Finally, another advantage of CML monitoring by 
RT-Q-PCR is the feasibility of this method on peripheral 
blood samples. In a large cohort of patients monitored to 
BCR-ABL mRNA levels after allogeneic bone marrow 
transplantation, we found that peripheral blood and bone 
marrow samples perform equally well in terms of sensi-
tivity in relapse detection and show a very good correla-
tion of results. Thus, molecular monitoring of CML with 
RT-Q-PCR can be performed using peripheral blood 
samples instead of bone marrow [78]. The drawbacks of 
this method include a substantial incidence of false nega-
tive tests, which on the other hand, is strongly reduced 
when serial evaluations are performed.

Nowadays, RT-Q-PCR monitoring is included as 
integral part of the management of CML patient treated 
with TKIs and must be performed every 3 months even in 
patients in MMR. An increase in BCR-ABL levels of 2 to 
5 fold is an early sign of relapse, and suggests the need to 
switch to another type of treatment as soon as possible.

Mechanisms of resistance

A growing problem in the treatment of CML is re-
sistance to treatment since most patients in chronic phase 
initially respond to TKIs but subsequently relapse and/or 
progress to accelerated phase or blast crisis [34,35]. Pri-
mary resistance or, perhaps more appropriately, primary 
refractoriness (typically BCR-ABL independent), is de-
fined as the failure to achieve initial response to therapy 
and is only seen in approximately 5% of newly diag-
nosed patients in chronic phase of CML [79]. Acquired 
resistance is more common (10-15% of patients) and it 
is defined as the loss of previous response. Resistance to 
TKIs may be primary or secondary and is usually clas-
sified in BCR-ABL-dependent or -independent. The 
BCR-ABL-dependent mechanisms include reactivation 
of BCR-ABL signaling through mutations in the ABL 
kinase domain (KD), and increased production of BCR-
ABL at the genomic (gene amplification) or transcript 

(overexpression) levels [80-82]. Conversely, BCR-ABL-
independent resistance mechanisms involve i) a drop in 
the intracellular drug concentration through expression 
of drug efflux (such as multidrug-resistant P-glycopro-
tein MDR-1) [83,84] or drug influx (such as hOCT1 
that affects intracellular drug availability) [85] genes; 
ii) activation of Src family of kinases (SFKs); and iii) 
acquisition of additional chromosomal abnormalities in 
addition to the Ph-chromosome [86-88]. Although gene 
amplification occurs more frequently than point muta-
tions (10–4 per cell division vs. 10–9), clinical resistance 
is much more likely to be due to a point mutation in the 
BCR-ABL TK domain than to BCR-ABL amplification 
[89]. To date more than 50 mutations have been identi-
fied, each of which arises at variable frequencies and with 
different consequences [90-103]. Mutations may occur in 
various ATP-binding sites, such as the phosphate-binding 
loop (P-loop), activation site, catalytic site, or other areas 
in the BCR-ABL structure. Depending on the mutation 
site, resistance to imatinib will either be absolute or rela-
tive, or it will be clinically irrelevant.

Earlier studies have associated P-loop mutations 
and the T315I mutation with the worst outcomes [104]. 
Mutations within the P-loop site are found in 30-40% of 
the resistant cases and reduce susceptibility to imatinib 
by 70 to 100 folds. The T315I mutation in BCR-ABL 
occurs in 0.16-0.32% of newly diagnosed patients in 
chronic phase, leading to substitution of threonine 315 
with isoleucine. This “gatekeeper” mutation also affects 
the response to the currently existing second-generation 
TKIs. Therefore, upon its identification, patients should 
be considered for alternative pharmacological treat-
ments or for allogeneic bone marrow transplantation.

Mutational analysis

A careful mutational screening allows the timely 
identification of potential mutant clones and suggests 
the most suitable second-line treatment based on the 
in vitro sensitivity of the specific mutation. The tech-
nologies used to identify and quantify the ABL KD 
mutations include: direct sequencing [42], subcloning 
and sequencing, denaturing-high performance liquid 
chromatography analysis (DHPLC) [97], pyrosequenc-
ing and allele specific oligonucleotide PCR. Direct se-
quencing represents the most widespread method used 
for routine monitoring. Its main drawback is the low 
sensitivity (20%) which is responsible for false negative 
results. Fluorescent-based allele-specific oligonucle-
otide PCR (ASO-PCR) assays have higher sensitivity 
(0.1%), although their main drawback is that the search 
for specific mutations does not include screening of the 
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entire KD region of the BCR-ABL gene. Nowadays, 
numerous groups perform DHPLC to monitor CML 
patients, followed by a sequence analysis to confirm the 
data. DHPLC has a sensitivity of 1-5% [105]. Mutation 
studies might be performed on peripheral blood or bone 
marrow although a direct comparison of these two types 
of samples has not been done yet.

The search for BCR-ABL mutations should be 
performed, according to NCCN CML guidelines [106], 
in the following conditions:
1. Progression to accelerated or blast phase
2. Treatment failure
3. Suboptimal therapeutic responses
4. Increasing BCR-ABL levels (5 to 10 fold in mRNA)

Scheduling CML diagnostics and monitoring 
(Figure 2)

An effective CML monitoring entails an appro-
priate follow up-schedule [107]. Evidence obtained 
in clinical trials has prompted experts to formulate 
consensus recommendations to assess the response to 
treatment in patients with Ph+ CML [108].

In the diagnostic setting, bone marrow cytoge-
netics is recommended before initiation of treatment. 
Additionally, a nested PCR confirms the diagnosis of 
CML and establishes the type of BCR-ABL fusion 
transcript present. Bone marrow cytogenetics is able 

to detect chromosomal abnormalities that FISH is not 
able to detect. However, if bone marrow collection is 
not feasible, FISH on peripheral blood specimen with 
dual probe (BCR and ABL genes) is a suitable tool to 
confirm the diagnosis. Subsequently, the cytogenetic 
evaluation is recommended at 6 and 12 months from 
the beginning of treatment. If a CCyR is achieved at 
6 months, it is not necessary to repeat the cytogenet-
ic evaluation at 12 months. If the patients is not in a 
CCyR at 12 months, a cytogenetic evaluation should 
be repeated at 18 months. Once cytogenetic remission 
is achieved, residual disease should be monitored us-
ing BCR-ABL transcript levels by RT-Q-PCR, which 
is the most sensitive technique to monitor BCR-ABL. 
The hybrid transcript levels should be measured every 
3 months at the beginning of treatment and then every 
3-6 months since a CCyR is achieved.

A steady decline in BCR-ABL transcripts indicates 
an ideal response to therapy. A rising level of BCR-ABL 
transcript (1 log increase) following the achievement of 
a MMR mandates to repeat the molecular analysis after 
1 month [107]. If the result is confirmed, bone marrow 
cytogenetics should be performed, BCR-ABL quantifi-
cations by RT-Q-PCR should be scheduled every month, 
and a kinase domain mutational analysis should also be 
done [43].

The evaluation of the hematologic response fore-
sees that, starting from treatment onset, blood cell counts 
are performed every 2 weeks until a stable CHR is achiev-

In cases of treatment failure or
transcript levels

A = qualitative RT-PCR 
B = quantitative RT-PCR 
C = mutational testing 

FISH (PB)
every 2-3 months 

CCyR 

Molecular  response
(PB or BM)

every 3 months 

MMR 

every 3 months 
B A B 

C 

Hematological
response (PB)

every 2 weeks every 3 months 

CHR 

Cytogenetics
analysis (BM)

every 6 months yearly 

CCyR Cytogenetic
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Figure 2. Proposed algorithm for CML monitoring according to the National Comprehensive Cancer Net-
work guidelines. The arrow pointing down indicates testing at the time of diagnosis, followed by interval 
testing as indicated until the response is documented (CHR: complete hematologic response; CCyR: com-
plete cytogenetic response; MMR: major molecular response; BM: bone marrow; PB: peripheral blood). 
After a response is achieved, the dotted arrow indicates recommended intervals for continued testing. The use 
of PB FISH for initial monitoring is optional, but does not appear to be superior to RT-Q-PCR. Once CCyR 
has been attained, there is no indication to perform FISH (on either PB or BM). These recommendations are 
adapted from the 2010 National Comprehensive Cancer Network panel recommendations.
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ed, then every 3 months [109]. If the patient fails to achie-
ve CHR by 3 months, the treatment is generally regarded 
as a failure, indicating the need to consider alternative 
therapeutic strategies.

In summary, the international guidelines recom-
mend that:
1. Hematologic responses should be assessed every 2 

weeks until a CHR is achieved, then every 3 months.
2. Cytogenetic responses should be assessed every 

6 months until a CCyR is achieved, then every 12 
months.

3. Molecular responses should be assessed every 3 
months, or monthly if an increasing BCR-ABL 
transcript level is detected.

Conclusions

Molecular tools have become fundamental not on-
ly in the diagnostic evaluation but even in the manage-
ment of CML patients. While traditional cytogenetics 
with or without FISH and qualitative nested-PCR are es-
sential for the diagnosis of CML, serial RT-Q-PCRs are 
the mainstay of therapeutic monitoring and MDR assess-
ment [45]. In cases of treatment failure highlighted by in-
creasing BCR-ABL levels and/or by loss of hematologic 
and cytogenetic responses, mutational analysis to iden-
tify KD mutations should be considered in order to meet 
the better treatment decisions (i.e. use alternative TKIs 
or stem cell transplantation) [46]. Additionally, an early 
identification of treatment failure increases the chance 
that alternative treatments will be effective [110].

All these said, despite the numerous advantages 
of modern technologies, it is important to continue in-
terpreting laboratory data within the clinical context 
of the patient in order to effectively and inexpensively 
utilize current and nascent laboratory tools.
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