
Targeted treatment for metastatic renal cell carcinoma and immune regulation

K.A. Laschos1, K.T. Papazisis1,2, L.F. Kontovinis1,2, C. Kalaitzis3, S. Gianakopoulos3, 
A.H. Kortsaris4, S. Touloupidis3
1Applied Molecular Oncology Laboratory and 23rd Department of Medical Oncology, Theagenion Cancer Hospital, Thessaloniki; 3De-
partment of  Urology and Andrology and 4Laboratory of Biochemistry, Department of Medicine, University Hospital of Alexandroupolis, 
Democritus University of Trace, Alexandroupolis, Greece

Summary

New targeted agents have become the mainstream of 
treatment in metastatic renal cell carcinoma (mRCC) and 
substituted the previous cytokine-based therapies. Vascular 
endothelial growth factor (VEGF) pathway is the principle 
target for drugs like sunitinib, sorafenib and bevacizumab. As 
VEGF is regulating dendritic cell (DC) function, inhibition of 
VEGF results in activation of DCs and a shift towards cellu-
lar (type 1) immunity, which is believed to favor cancer rejec-
tion. Recent studies have established the immune-stimulating 
effects of sunitinib that may as well be a marker for effective-
ness. On the other hand, sorafenib not only inhibits VEGF re-
ceptor (VEGFR) but is also a B-Raf inhibitor (a component of 
the ras – MAPK pathway) and this leads to downregulation of 
immune responses. Sorafenib has not yet shown benefit in first-

line treatment of mRCC when compared to interferon (IFN)-α 
and sorafenib-mediated immunosuppression may partially 
account for that. Mammalian target of rapamycin (mTOR), 
the target of temsirolimus, is an element of the DC activation 
pathway. There are no data for in vivo effects of temsirolimus 
in the immune system. The addition of IFN-α to temsirolimus 
resulted in inferior outcomes than temsirolimus alone. IFN-α 
has however still a place in mRCC treatment, as bevacizumab 
has been approved in combination with IFN-α. New clinical 
trials address the effects of the combination of cytokines with 
targeted agents. The immune-modulating effects of targeted 
treatments may be important in pharmacodynamic outcomes, 
effectiveness or the development of adverse events.
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Introduction

RCC affects more than 50,000 patients in the Unit-
ed States each year, accounting for more than 13,000 
deaths annually. These tumors account for approximately 
3% of adult malignancies and occur in a male-female ra-
tio of 1.6:1[1]. The cell of origin, morphology and growth 
pattern characterizes RCC histology. Histologically, 4 
major RCC subtypes have been identified: clear cell (60-
80%), papillary (10-15%), chromophobe (5-10%) and 
collecting duct carcinoma (< 1%). Clear-cell histology is 
associated with a better outcome than papillary or chro-
mophobe histology in the metastatic setting, but the op-
posite is true for localized disease [1,2]. Rare histologies 
like clear cell carcinoma with rhabdoid features have an 
even worse outcome [4]. Localized disease is curable 
with surgery but a third of patients present with incurable 

metastatic disease. The aim of management (when met-
astatic disease is present) is palliation, although with the 
development of the novel targeted agents prolongation of 
life appears to be a real possibility. The median survival 
for patients with mRCC before the era of novel targeted 
treatments was 10-12 months [5]. After the introduction 
of targeted treatment (sunitinib), reports raise the medi-
an survival up to 2 years in patients that have previously 
failed cytokine therapy [6].

RCC, angiogenesis and immune surveillance

Angiogenesis is important for tumor growth and 
development as well as for metastatic spreading. RCC 
is often associated with deregulation of angiogenesis 
through alterations (mutation or gene methylation) of 
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Treatment for metastatic RCC. From cytokines 
to targeted agents

Several lines of evidence suggest that RCC is an 
immune-sensitive cancer. For years, treatment with 
interleukin-2 (IL-2) or IFN-α was the only treatment 
available for patients with mRCC [19]. A minority of 
mRCC patients responds to IL-2 or IFN-α treatment 
with durable remissions that may even lead to cure in 
some of them, though this is at the expense of severe ad-
verse reactions [20]. However, these agents may pro-
vide only modest increases in median survival [21]. IL-2 
and IFN-α have now been largely replaced in the treat-
ment of mRCC by novel agents targeting specific com-
ponents of the pathways involved in tumor growth and 
angiogenesis [22]. VEGFR inhibition with the multitar-
geted receptor tyrosine kinase inhibitors sunitinib [23-
25] (Sutent®, Pfizer Inc.) and sorafenib [26] (Nexavar®, 
Bayer HealthCare/Onyx Pharmaceutical) has proven 
to be an effective strategy for the treatment of mRCC 
and both agents are now in clinical practice and being 
tested in the adjuvant setting. Furthermore, the VEGF 
ligand-binding monoclonal antibody bevacizumab [27] 
(Avastin®, Genetech, Inc.) and the mTOR kinase inhibi-
tor temsirolimus (Toricel®, Wyeth Pharmaceuticals) have 
demonstrated clinical activity in patients with mRCC as 
well [28]. Recently, everolimus (Afinitor, RAD001, No-
vartis), another inhibitor of mTOR, was approved for the 
treatment of mRCC in patients progressing after therapy 
with sorafenib, sunitinib or both [29] (Table 1).

the von Hippel-Lindau (VHL) tumor-suppressor gene 
[7], that regulates the expression of the hypoxia-induc-
ible factor alpha (HIF-α). HIF-α is a transcription factor 
that controls the expression of several pro-angiogenic 
genes like VEGF and platelet-derived growth factor 
(PDGF) [8]. The VHL-HIF-VEGF axis is therefore a 
target for therapeutic interventions in mRCC [9].

DCs are the most potent antigen-presenting cells 
(APCs) [10] and play a central role in the host’s anti-
tumor immunity. Many investigators have described 
the defective function of DCs in tumor-bearing hosts 
[11,12]. One of the possible reasons for this DC de-
fectiveness is the secretion of VEGF by tumor cells. 
VEGF is regulating immune responses by inhibiting 
DCs differentiation, maturation and function [13,14]. 
VEGF inhibits TLR4-mediated but not pro-inflamma-
tory cytokine-mediated DC maturation [15]. This effect 
is differentially mediated by VEGF-receptor subtypes 
(VEGFR1 and VEGFR2) [16] and can be partially re-
versed by VEGF-trap [17]. Additionally, VEGF in-
hibits T-cell development and activation, and this may 
further contribute to tumor-induced immune suppres-
sion [18]. Inhibiting VEGF by bevacizumab or VEGFR 
by the protein tyrosine kinase inhibitors sunitinib and 
sorafenib may therefore reverse the DCs dysfunction 
and T-cell activation in patients with mRCC and/or 
synergize with immunotherapeutic approaches.

We will therefore discuss the rationale of such an 
approach and the emerging clinical and experimental 
data.

Table 1. Clinical data regarding 5 principal targeted agents used in everyday practice

Treatment ORR Any reduction in PFS OS
 % tumor burden, %

Immunotherapy
High dose IL-2 20-23 [51-55] NA 3.1 [54] 19 [53]
Low dose IL-2 or IFN-α 10-15 [56-59] NA 4.7 [59] 12-14 [57]

Small molecular weight
inhibitors of VEGFR

Sunitinib 30-45 [23,24,60] 70-75 11 mos treatment-naïve [24] 26.4 mos [62]
   8.4 mos cytokine-refractory [23,60] 21.8 mos [61]

Sorafenib 2-10 [26,61] 70-75 5.7 mos treatment-naïve [62] 17.8 mos [63]
   5.5 mos treatment-refractory [26]
Bevacizumab (BEV) 10-13 [64,65] 70-75 8.5 mos [65] NA
monotherapy
BEV+IFN-α 26-31  10.2 mos treatment-naïve [27]
   4.8 mos cytokine-refractory [64]
mTOR inhibitors

Temsirolimus 7-9 [28,66] NA 3.7 mos treatment-naïve [28] 10.9 mos [28]
   5.8 mos pretreated [66]

Everolimus 1 [29] 60 [29] 4.0 mos [29] NA

ORR: objective response rate, PFS: progression-free survival, OS: overall survival, NA: not available, VEGFR: vascular endothelial growth factor 
receptor, IFN-α: interferon alpha, IL-2: interleukin 2, mTOR: mammalian target of  rapamycin, mos: months
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not directly targeting VEGF as the other registered tar-
geted agents. There are data showing that mTOR is cru-
cial for the IFN responses of plasmatocytoid DCs [33], 
the IL-18 production of DCs [34] and rapamycin can 
induce DCs apoptosis [35]. On the other hand, mTOR 
is regulating the TLR4-mediated IL-12 secretion by 
DCs and rapamycin increases IL-12 production (and 
cell-mediated immune responses) under these condi-
tions [36]. The exact role of mTOR in DC physiology 
is still controversial but it seems that it is a component 
of the pathway that regulates the production of proin-
flammatory cytokines and shifts the maturation of DCs 
towards a more Th1-inducing type (high IL-12 and 
low IL-10 production) [37]. Inhibition of mTOR with 
temsirolimus and induction of inflammatory immune 
responses with IFN-α could stimulate Th2 humoral in-
flammatory responses, counting for the higher incidence 
of adverse reactions seen in the combination arm of the 
ARCC trial. Patients in the combination arm experi-
enced more grade 3-4 adverse events and consequently 
had more delays and reductions in treatment.

The question as to what extent cytokine treatment 
may add effectiveness to targeted treatments remains 
still unanswered. However, it is intriguing to think that 
even though targeted therapies perform generally better 
than IFN-α, they do not lead to cure or the long-lasting 
remissions that a small minority of patients was experi-
encing with the cytokine treatment. Therefore, it would 
be important if it could be possible to identify those pa-
tients that may gain a large benefit from cytokine thera-
py and treat them with IFN-α or IL-2. Alternatively, new 
ways of combining targeted treatment with cytokines 
should be explored or attain deeper knowledge of the 
immune-mediating actions of targeted therapies. Such 
an approach may lead to better combinations or optimal 
sequencing and use of anti-mRCC treatments.

Do targeted treatments affect immune surveil-
lance? (Table 2)

In concert with the in vitro data, sunitinib augments 
the in vivo immune responses.  This is supported by nu-

Cytokine treatment in the era of targeted the-
rapies (Figure 1)

There is preclinical evidence suggesting that com-
bining anti-VEGF therapy and immunotherapy leads to 
a greater antitumor activity than either agent alone in tu-
mor-bearing mice [30]. IFN-α activates DCs [31] and it 
may synergize with bevacizumab in more effective stim-
ulation of the immune responses. Interestingly, treatment 
with bevacizumab was approved in combination with 
IFN-α, as was the original design of the AVOREN study 
[27]. However, the AVOREN study had no arm without 
IFN-α and the benefit of bevacizumab was evident even 
when combined with very low IFN-α doses [32]. 

In the ARCC trial (the temsirolimus registrational 
study) the combination of IFN-α with temsirolimus did 
not improve responses and resulted in inferior overall 
survival compared to the temsirolimus monotherapy 
arm [28]. We have to notice though that temsirolimus is 

Table 2. Targeted agents used in the treatment of metastatic renal cell carcinoma and their effects in immune regulation

Targeted agent Indications Immune effects

Sunitinib 1st line mRCC Increases DCs numbers, maturation and function
Sorafenib 2nd line mRCC Decreases DCs maturation and function, and T-cell function
Temsirolimus 1st line mRCC (after TKIs) Probably immune suppression
Bevacizumab 1st line mRCC In combination with IFN-α, probably IFN effects predominate
  (immune-stimulation)

mRCC: metastatic renal cell carcinoma, TKIs: tyrosine kinase inhibitors, DCs: dendritic cells, IFN-α: interferon alpha

Figure 1. Schematic representation of the immune recognition by 
a T-cell. Dendritic cells (DCs) present antigen to T-cell receptor 
(TCR) via a major histocompatibility antigen class II (MHC-II). 
Downstream events include the activation of RAS – RAF – MAPK 
pathway, a target of sorafenib. On the other hand, effective antigen 
presentation requires at least a “second” signal that is usually given 
via a B7- CD28 interaction. Maturation of DCs and B7 expression 
is inhibited by VEGF, and sunitinib/sorafenib increase the expres-
sion of the costimulatory molecules in the surface of DCs. A third 
signal that polarizes T-cells towards a TH1 or a TH2 immune 
response may be regulated by the mTOR pathway.

1st signal:
MHC-II / Antigen / TCR

2nd signal:
B7 / CD28

T-cell

DC

ras

raf
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tivity [37]. The positive effects of sunitinib on DCs func-
tions are of major importance, as DCs are the most potent 
antigen-presenting cells and the orchestrators of the initial 
immune responses (Table 3). Whether the immunostimu-
latory effects of sunitinib account for the higher response 
rate seen in clinical trials or this represents just a pharma-
codynamic readout remains to be answered.

Sorafenib displays different effects on the immune 
system. Additionally, it has shown lower response rates 
and could not establish a higher activity than IFN-α in 
first-line treatment. The sorafenib-mediated immune 
suppression may partially explain this phenomenon and 
could argue for trials to combine sorafenib with cytokine 
treatment [49]. A recent study, however, showed no bene-
fit when low-dose IFN-α was added to sorafenib for first-
line treatment in mRCC patients [50].

Finally, bevacizumab has shown benefit in the 
first-line treatment, in combination with IFN-α, whilst 
temsirolimus is effective alone and the addition of IFN-α 
results in inferior effectiveness. These two agents inter-
fere with the DC physiology on a different way and this 
may explain the different results when combined with 
IFN-α. Table 2 resumes the effects of targeted therapies 
on the immune system of patients with advanced RCC.

New targeted treatments have changed the way 
we see and treat mRCC. There is still room to inves-
tigate the role of cytokines and the effects of the new 
agents on the immune system.
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