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Summary

One of the main topics of the annual meeting of the 
American Society for Clinical Oncology in 2011 were the re-
sults presented on breast cancer chemotherapy and concom-
itant administration of the oral antidiabetic metformin. The 
overall agreement was that current evidence is just enough 
to dramatically change the clinical practice of oncology, 
and in our case, brain cancer treatment, and that further re-
search is needed to address the relationship between diabe-
tes, metabolism, insulin analogues and neoplasia. Still, it is 
very interesting to explore the potentially beneficial effects of 

metformin in glioma chemo/immunotherapy and wait for re-
sults in the clinic.

In the current paper we present the cell and molecular 
aspects of the metabolic syndrome, metformin administra-
tion and cancer chemotherapy, with a special emphasis in 
neuro-oncology, since brain tumors are usually devastating 
diseases with an extremely high mortality within two years of 
diagnosis even when surgical, radiotherapeutic and chemo-
therapeutic interventions are applied.
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Background

Chemotherapy can effectively reduce the initial 
cancerous lesion, but the disease will usually ultimately 
relapse. In order to explain all the clinical data, the can-
cer stem cell hypothesis suggests that a tumor contains a 
small number of tumor-initiating, self-renewing cancer 
cells with stem-like characteristics within a population 
of non-tumor forming cancer cells. Unlike other types 
of tumor cells, cancer stem cells (CSCs) are resistant 
to conventional chemotherapy and have the ability to 
regenerate the initial tumor after treatment. Due to this 
observation, drugs that selectively target CSCs offer a 
great promise for cancer therapy, may it be chemo/ ra-
dio or immunotherapy, although none are known to this 
moment [1,2].

Brain tumors are usually devastating diseases with 
an extremely high mortality within two years of diag-

nosis even when surgical, radiological and chemothera-
peutic interventions are applied [3]. Gliomas, the most 
frequent tumors of the central nervous system tumors, 
are treated by gross total resection when possible, corre-
lated with a better clinical outcome and improved neu-
rological functions. But because such tumors are very 
often infiltrative, total resection is difficult to achieve, 
which results in poor survival. Subsequent treatments 
with intravenously or intrathecally administered che-
motherapeutic drugs have limited use because of the ad-
verse systemic side-effects and poor blood-brain barrier 
penetration, despite state-of-the-art strategies such as 
gold-nanoparticles or targeted molecular therapy [4-6].

Recently, several epidemiological studies have re-
ported that diabetes is correlated with an increased risk 
of breast cancer [7]. On the other hand, other data also 
suggest that treatment of diabetes with the biguanide 
metformin, a first-line drug used in patients with non-
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low. As a result, in the presence of high glucose concen-
trations, hexokinase becomes saturated and the polyol 
pathway becomes activated. The excess glucose is me-
tabolized by the enzyme aldose reductase to sorbitol and 
eventually to fructose, in a reaction that uses NADPH 
(the reduced form of nicotinamide dinucleotide phos-
phate) as a cofactor. NADPH is also required by the en-
zyme glutathione reductase in a reaction that regener-
ates reduced GSH. This can compromise the recycling 
of glutathione disulphide (GSSG) to GSH, which in turn 
can compromise the conversion of hydrogen peroxide 
to water. Mitochondria produce superoxide (O2˙–) and 
impaired clearance of hydrogen peroxide (H2O2) can 
cause the production of superhydroxide (˙OH) through 
the Fenton reaction [14-18] (Figures 2, 3).

Thus the ROS superhydroxide is able to activate 
AMPK, which leads to cell growth inhibition. Further-
more, GSH is one of the most important antioxidant 
mechanisms in the cell and any reduction in GSH in-
creases cellular susceptibility to oxidative stress and 
also affects the repair mechanisms of DNA. Sorbitol is 
degraded slowly and does not readily diffuse across the 
cell membrane. The intracellular accumulation of sorbi-
tol results in osmotic changes that potentially lead to cell 
damage. The increase in intracellular osmolarity, due to 
shunting of glucose into the polyol pathway and the con-
sequent sorbitol accumulation, may lead to compensa-
tory depletion of the endoneurial osmolytes taurine and 
myo-inositol in order to maintain osmotic balance [19].

The majority of the growth inhibitory effects 
of metformin are mediated through the inhibition of 

insulin dependent diabetes mellitus, is connected with a 
significantly decreased incidence of cancer when com-
pared with other drugs such as sulfonylureas or insulin 
[8]. Thus, in this article we review the possible mecha-
nisms of action of this old drug, which might exert a po-
tentially important impact in neuro-oncology.

Cell metabolism

Cell physiology is regulated coordinately by mul-
tiple signals that include a wide variety of growth fac-
tors, availability of nutrients and intracellular ATP. When 
talking about cell signalling, several mechanisms of 
metformin’s action have been proposed, out of which 
the most important one relates to the activation of the 
adenosine monophosphate-activated protein kinase 
(AMPK) pathway. Cell growth inhibition is partially 
abolished in the presence of small interfering RNAs 
against AMPK or AMPK inhibitors, thus demonstrat-
ing the pivotal role of this pathway [9,10]. Linear pot-
teray culture (LKB1) expression is essential for the ac-
tivation of AMPK by metformin as this drug does not 
inhibit cell growth in LBK1-null cells and confirms the 
requirement of functional LBK1 for metformin-induced 
AMPK activation.

Recent data show that AMPK is activated through 
LBK1 without an increase in the AMP/ATP ratio, but 
in the presence of increased reactive oxygen species 
(ROS) levels generated in hypoxic condition. Activa-
tion of AMPK is abolished when cells are treated with 
the antioxidant EUK-134 and in cells deficient in mito-
chondrial DNA, as hypoxic activation of AMPK is de-
pendent on mitochondrial ROS but independent of an 
increase in the AMP/ATP ratio [11] (Figure 1). Several 
studies suggest that metformin has an acute insulin-like 
effect independent of its ability to increase insulin bind-
ing, possibly by enhancing the activity of the glucose 
transporters. In a study on human adipocytes, metfor-
min increased GLUT-4 protein content in the plasma 
membrane [12]. GLUT -1 mRNA is also expressed in 
human high grade gliomas [13]. Thus, the distribution 
of the glucose transporter in human brain tumors sug-
gests that metformin increases the intracellular concen-
tration of glucose in glioma cells.

In normoglycemic state, most intracellular glu-
cose is metabolized via the energy-producing glycolytic 
pathway involving an initial phosphorylation by the en-
zyme hexokinase. Only a small percentage of glucose 
enters the polyol pathway but in contrast, under hyper-
glycemic conditions there is increased flux of glucose 
into the polyol pathway. While glucose has a high af-
finity for hexokinase, the affinity for aldose reductase is 

GSH

–

repair
mechanismsROS

DNA damage

–

Figure 1. Any reduction in glutathione (GSH) increases cellular sus-
ceptibility to oxidative stress and also affects the DNA repair mecha-
nisms. ROS: reactive oxygen species.
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Metformin use in medical oncology. A bridge 
towards brain cancer research

Metformin is a biguanide, a widely prescribed oral 
medication used as front-line therapy for type 2 diabe-
tes and polycystic ovary syndrome [25,26]. Population 
studies suggest that metformin decreases the incidence 
of cancer and cancer-related mortality in diabetic pa-
tients. Recently, exciting preclinical studies have shown 
that metformin can inhibit the growth of cancer cells, 
including breast cancer in vitro and of tumors in vivo. 
More recently, a retrospective study of patients who 
received neoadjuvant chemotherapy for breast cancer 
showed that diabetic cancer patients receiving metfor-
min during their neoadjuvant chemotherapy had a high-
er pathological complete response rate than diabetic pa-
tients not receiving metformin [27].

Initial experiments showed that metformin was 
capable of reducing proliferation in prostate, colon, 
and breast cancer cell lines through cell cycle inhibition 
shown by an important decrease of cyclin D1 protein 
level [28]. Subsequently in vivo experiments using in-
traperitoneal or oral metformin in nude mice resulted in 
tumor growth inhibition. To evaluate the effect of met-
formin on cell proliferation, investigators looked at the 
effect of this drug in vitro in a group of breast, ovarian, 
and prostate cancer cells lines. In MCF-7 human breast 

mTOR signalling. Activation of AMPK by metformin 
results in phosphorylation and stabilization of tuberous 
sclerosis complex, which integrates regulatory inputs 
and transmits them to mTOR. These regulatory inputs 
include oxygen-dependent signals and growth factor-
dependent signalling pathways such as the phosphati-
dylinositol 3-kinase (PI3K) and the AMPK signalling 
pathways [20]. It should be stated that mTOR phosphor-
ylates down-stream mediators leading to the regulation 
of cell cycle progression, cell growth and angiogenesis, 
and the activation of mTOR-dependent protein trans-
lation correlates with malignant progression, adverse 
prognosis and resistance to both chemotherapy and tar-
geted therapy such as trastuzumab [21].

Clinical trials using rapamycin analogues, such as 
temsirolimus and everolimus, currently registered for 
the treatment of advanced renal cell carcinoma, have 
validated the importance of mTOR inhibition as an an-
ticancer treatment strategy. However, the antitumor ac-
tivity as a single agent (e.g. everolimus) in renal cell car-
cinoma is modest. But interestingly, preclinical studies 
indicate that metformin lowers cell survival to a great-
er extent than the mTOR inhibitor rapamycin [22,23].

It has been shown that breast CSCs acquire less 
DNA damage following radiation compared to non-
stem cells. Following a 10 Gy isodose, there is less DNA 
damage and decreased ROS in breast CSCs compared to 
non-stem tumor cells. There is also an increased expres-
sion of genes involved in GSH synthesis, suggesting that 
CSCs have an effective DNA repair mechanism through 
increased levels of ROS scavengers [24]. For example, 
exposure of CSCs to buthionine sulfoximine, a pharma-
cologic agent producing depletion of GSH, will eventu-
ally end up in CSCs radiotherapy resistance.
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Figure 2. The reduction of glutathione (GSH) can compromise the 
conversion of hydrogen peroxide (H2O2) to water. Mitochondria 
produce superoxide, and the impaired clearance of H2O2 can cause 
the production of superhydroxide (OH) through the Fenton reaction. 
ROS: reactive oxygen species. (+) represents the activation of the 
pathway and (-) its inhibition.
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Figure 3. Metformin enhances the activity of glucose transporters 
(Glut1/Glut3), thus increasing the intracellular concentration of glu-
cose. While glucose has a high affinity for hexokinase, the affinity 
for aldose reductase is low. As a result, in the presence of high glu-
cose concentrations, hexokinase becomes saturated and the polyol 
pathway becomes activated. The excess glucose is metabolized by 
the enzyme aldose reductase to sorbitol, a polyol, and eventually to 
fructose, in a reaction that uses NADPH (the reduced form of nico-
tinamide dinucleotide phosphate) as a cofactor. NADPH is also re-
quired by the enzyme glutathione reductase in a reaction that regen-
erates reduced glutathione (GSH). This can compromise the recy-
cling of glutathione disulphide (GSSG) to glutathione.“G” stands 
for G-type protein.
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to dramatically change the clinical practice of oncology, 
and in our case brain cancer treatment, and that further 
research is needed to address the relationship between 
diabetes, metabolism, insulin analogues and neoplasia. 
Still, it is very interesting to explore the potentially ben-
eficial effects of metformin in glioma chemo/immuno-
therapy and wait for results in the clinic.
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