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Summary

Epithelial ovarian cancer (EOC) is the most common 
ovarian malignancy. EOCs comprise a diverse group of neo-
plasms, exhibiting a wide range of morphological character-
istics, genetic alterations, and biological behaviors. Current-
ly, there is no effective screening for early detection of EOCs 
and more than two-thirds of EOC patients are diagnosed 
with advanced stage disease. The major limiting factors in 
the treatment of EOC patients are recurrence and chemore-
sistance. Recent studies suggest that EOCs, like other solid 
tumors, contain distinct populations of cells that are respon-
sible for tumor initiation, maintenance and growth. These 

cells, termed cancer stem cells (CSCs), display some of the 
features of normal stem cells and are thought to evade cur-
rent chemotherapeutic strategies for the treatment of EOCs. 
Distinguishing CSC-associated antigen profiles may eluci-
date novel, more sensitive biomarkers for early detection of 
EOCs and provide molecular targets for the development of 
new treatment modalities. This review summarizes the cur-
rent approaches to EOCs based on the concept of CSCs and 
evaluates their clinical relevance.
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Introduction

Worldwide, ovarian cancer is the second most le-
thal gynecological malignancy [1]. Nonspecific symp-
toms, lack of reliable biomarkers, frequent diagnosis of 
advanced-stage disease, and the presence of drug-resis-
tant histological subtypes limit the cure rates and prog-
nosis for ovarian cancer patients.

At present, there is no effective screening for early 
detection of EOCs and more than two-thirds of EOC pa-
tients are diagnosed with the International Federation of 
Gynecology and Obstetrics (FIGO) stage III or IV dis-
ease [2,3]. Current treatment of patients with EOC in-
cludes surgical resection (debulking), followed by che-
motherapy, usually involving platin compounds and a 
taxane. Despite advances in therapy, recurrence and che-
motherapy resistance are still significant clinical prob-
lems. In fact, the majority of EOC patients who achieve 
a complete remission with chemotherapy will ultimately 

develop recurrent disease. These clinical settings sup-
port the hypothesis that EOCs contain a subpopulation 
of cells, termed CSCs or tumor-initiating cells, which 
escape therapeutic procedures and have the capacity 
to sustain tumor progression [4]. Ineffective targeting 
of CSC populations is responsible for the therapeutic 
failures and tumor recurrences [4,5]. Efforts to identi-
fy specific genetic and signaling pathway alterations in 
CSCs have led to the discovery of novel biologic targets 
that can be used to design adjuvant therapies that could 
potentially overcome chemoresistance and lead to im-
proved response rates and overall survival [5,6].

The last decade has witnessed a great interest in 
CSCs. According to a consensus definition [7], CSC 
is a cell within a tumor that possesses the capacity to 
self-renew and to generate the heterogeneous lineages 
of cancer cells that comprise the tumor. Tumorigenic 
populations fulfilling the definition of CSCs have been 
identified in a number of human cancers, such as leuke-
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(Brenner) carcinomas [57]. These tumors generally be-
have in an indolent fashion, are confined to the ovary at 
the time of presentation and develop from well-estab-
lished precursor lesions that are termed “borderline” tu-
mors [57-59]. They lack mutations of TP53 and are rela-
tively genetically stable but each histologic type exhib-
its a distinctive molecular genetic profile [57]. The most 
common genetic alterations seen among type I tumors 
are KRAS and BRAF mutations, both of which activate 
the oncogenic MAPK signaling pathway [54,57-59,61]. 
PTEN mutations, which typically result in constitutive 
PI3K signaling, occur in ~20% of type I endometrioid 
neoplasms [62]. The MAPK and PI3K pathways are relat-
ed and they eventually converge upon a common down-
stream translation factor, eIF4B [63], which may repre-
sent an important signaling axis in type I tumor develop-
ment. WNT and TGF-β signaling pathways are also of po-
tential importance for type I tumor pathogenesis, based on 
the presence of β-catenin mutations in 16-54% of endo-
metrioid tumors and TGF-β RII mutations in 66% of type 
I clear cell tumors [42,54]. Interestingly, all of the genes 
altered in type I ovarian tumors are components of path-
ways that become intimately related during the process of 
epithelial-to-mesenchymal transition [64,65]. Type II tu-
mors include high-grade serous and high-grade endome-
trioid carcinomas, malignant mixed mesodermal tumors 
(carcinosarcomas) and undifferentiated carcinomas [57]. 
These tumors are rapidly growing, highly aggressive neo-
plasms that lack well defined precursor lesions [59]. Type 
II tumors display TP53 mutations and may exhibit over-
expression of HER2/neu and AKT2 [42,54,57-60,66-69].

Cancer stem cell concept

It is well established that tumors are composed of 
phenotypically and functionally heterogeneous cells. 
Such heterogeneity has led investigators to renew their 
interest in an old hypothesis that tumors, like certain 
normal tissues, are arranged in a hierarchical order in 
which only certain populations of cells are responsible 
for generating the multiple cell types within the tumor 
[4]. CSC hypothesis postulates that tumors contain phe-
notypically distinct populations of stem-like cells with 
self-renewal capacity and the potential to reconstitute 
the entire cellular heterogeneity of a tumor [70].

According to a consensus definition [7], CSC is a 
cell within a tumor that possesses the capacity to self-re-
new and to generate the heterogeneous lineages of can-
cer cells that comprise the tumor. CSCs sit at the apex of 
a hierarchically organized tumor cell populations and are 
solely capable of dividing asymmetrically to generate an 
exact copy of themselves (self-renewal capacity) and a 

mias [8-13], bladder cancer [14], breast cancer [15,16], 
brain cancers [17], colon cancer [18-20], head and neck 
cancers [21], pancreatic cancer [22,23], malignant mel-
anoma [24], prostate cancer [25], lung cancer [26], liver 
cancer [27], Ewing sarcoma [28], and ovarian cancer 
[29-37] besides others. It is currently not known wheth-
er all cancers contain subpopulations of CSCs.

This review summarizes the current approaches to 
EOC based on the concept of CSCs and evaluates their 
clinical relevance.

Epithelial ovarian cancer

Ovarian cancer is a heterogeneous disease. EOCs 
comprise the majority of ovarian cancers and may be 
classified into 8 distinct histological subtypes, namely 
serous, endometrioid, mucinous, clear cell, transitional 
cell, squamous cell, mixed epithelial and undifferentiat-
ed [38]. There are major differences in incidence, tumor 
behavior (low vs. high malignant potential), and clini-
cal outcome between each histological subtype. It has 
been estimated that ~50% of malignant ovarian tumors 
are serous carcinomas, while ~25% are endometrioid 
carcinomas, ~10% are mucinous carcinomas, and ~5% 
are clear cell carcinomas [39]. However, a study by Se-
idman et al. [40] reported incidences of 70, 7, 10, and 
<3% for serous, endometrioid, clear cell, and mucinous 
carcinomas, respectively, suggesting that traditional 
distribution figures may vary considerably. In terms 
of behavior, serous carcinomas tend to be aggressive, 
high-grade neoplasms that spread rapidly throughout 
the pelvis, while endometrioid and mucinous carcino-
mas are usually low-grade tumors, confined to the ovary 
[41,42]. Clear cell and endometrioid carcinomas, unlike 
other subtypes, are strongly linked to endometriosis, 
leading some authors to believe that it may be a precur-
sor to these carcinomas [43-52].

The specific site of origin of EOC is unclear. The 
most accepted hypothesis was that EOCs are derived 
from the ovarian surface epithelium and/or cortical in-
clusion cysts [53,54]. More recently, it has been pro-
posed that some cases of EOC may actually originate 
from the epithelial lining of the distal fallopian tube, sug-
gesting that if ovarian cancer is a stem cell based disease, 
the cells of origin are not limited to the ovary [4,55-58].

The “dualistic model” of EOC pathogenesis was 
recently proposed in an attempt to integrate a growing 
clinical, pathological, and molecular genetic evidence 
that supports at least 2 broad categories of EOC designat-
ed type I and type II [42,57-60]. According to this model, 
type I tumors include low-grade serous, low-grade en-
dometrioid, mucinous, clear cell, and transitional cell 
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brane ABC transporters such as ABC, G2 subfamily/
breast cancer-resistance protein-1 (ABCG2/BCRP1) 
[4,36,82]. Therefore, SP cells can be efficiently isolated 
by flow cytometry sorting. SP phenotype, coupled with 
the expression of stem cell markers, is the hallmark of 
normal stem cells as well as CSCs [5,83-85]. Increased 
expression of ABCG2/BCRP1 in SP cells is responsi-
ble for chemoresistance [4,5,36,86]. SP cells have been 
found in several tissues and cell lines, including skin, 
lung, mammary epithelium, and embryonic stem cells 
[87-90]. They have also been isolated from malignant 
tumors, including leukaemia [91,92] and breast [74,93], 
brain [74], prostate [74], retinoblastoma [94], lung [95], 
and ovarian [30,36,96,97] cancers.

Using Hoechst 33342 dye efflux, Szotek et al. [30] 
identified and characterized SP cells from two distinct 
genetically engineered mouse ovarian cancer cell lines 
(MOVCAR7 and 4306) with the capacity for self-re-
newal and production of heterologous non-SP progeny. 
In in vivo assays, SP cells showed a higher tumor-form-
ing ability than non-SP cells. The Müllerian inhibiting 
substance inhibited the proliferation of both SP and non-
SP cells in contrast to the lipophilic chemotherapeutic 
agents, such as doxorubicin, where SP showed signifi-
cant chemoresistance. SP cells were also identified in 
the human ovarian cancer cell lines IGROV-1, SK-OV3, 
and OVCAR3, and in cells from patient ascites, although 
in a much smaller number [30]. Also, it was shown that 
SP cells isolated from ascites derived from EOC patients 
and from mice inoculated with human ovarian cancer 
cell lines expressed stem-related cell markers, such as 
Oct4, Nanog, STELLAR, and ABCG2/BCRP1 [36].

Moserle et al. [96] investigated the presence of SP 
in EOC and found it in 9 of 27 primary tumor samples 
analyzed, as well as in 4 of 6 cultures from xenotrans-
plants. In this study, SP cells showed higher prolifera-
tion rates, apoptotic resistance, and significant tumori-
genic ability compared to non-SP cells. IFN-α, a cy-
tokine that has widely been used to treat solid tumors, 
exerted significant antiproliferative and proapoptotic 
effects on primary cultures containing high numbers of 
SP cells, and was related to a distinctive change in their 
transcriptional profile, which was not observed when 
tumors bearing low SP levels were treated [96].

Recently, SP cells were examined using the hu-
man ovarian cancer cell line OVCAR-3 [97]. Under op-
timal processing and staining parameters, only 0.9% of 
the whole population was sorted as SP cells. The sorted 
SP cells showed significantly higher colony formation 
efficiency than the non-SP cells, and only the SP cells 
could form holoclones. Real-time PCR disclosed that 
SP cells expressed higher levels of the “stemness” gene 
Oct3/4 than the non-SP cells did [97].

more differentiated progenitor cell [4,71]. These more 
differentiated progenitor cells divide rapidly to generate 
large numbers of daughter cells that will form the bulk of 
the tumor. Moreover, CSCs are thought to be responsi-
ble for tumor initiation, progression and metastasis [72].

There appears to be several sources from which 
CSCs can arise. They may arise from normal adult stem 
cells, from more restricted progenitor cells, or even 
from differentiated cells [71,73]. Normal stem cells are 
the likely targets of mutagenesis, leading to the forma-
tion of CSCs as they already possess active self-renewal 
pathways, whereas induction of self-renewal genes is 
required to transform differentiated cells [73].

In addition to unlimited self-renewal and prolifer-
ative capacities, CSCs are also long-lived and relatively 
quiescent, allowing them to escape the cytotoxic effects 
of chemotherapeutic agents that target actively dividing 
cells. Although the precise mechanisms responsible for 
chemoresistance are poorly understood, they probably 
include increased expression of ATP-binding cassette 
(ABC) transporter proteins and/or detoxifying enzymes 
(e.g. aldehyde dehydrogenase, reactive oxygen species 
[ROC] antioxidants) given the potential for increased 
exposure to toxins throughout the extended CSC life 
cycle, as well as the disruption of apoptotic pathway 
mechanisms [24,74-80]. CSCs have also been shown to 
be refractory to the effects of radiation [78]. It is hypoth-
esized that CSCs possess DNA protective mechanisms 
that prevent the effects of radiation [78,81].

Cancer stem cells in epithelial ovarian cancer

Cells express a variety of markers on their surface. 
The expression of these markers has been used to iso-
late subpopulations of cancer cells for examination of 
CSC properties.

The first study on the isolation and identification of 
epithelial ovarian CSCs was reported a few years ago. 
Bapat et al. [29] identified clonogenic cells isolated from 
the ascitic fluid of a single patient with advanced serous 
ovarian adenocarcinoma. These clones, propagated as 
multilayered spheroids in serum-containing media, pos-
sessed stem-like properties and expressed several mark-
ers of pluripotency. Also, these clones generated differ-
entiated progeny in vitro, formed xenograft tumors in 
vivo and could be serially transplanted in nude mice [29].

Side population cells

Side population (SP) cells are cells with the prop-
erty of active expulsion of certain molecules (e.g. 
the vital dye Hoechst 33342), through plasma mem-
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tein that is ubiquitously expressed. Multiple isoforms of 
CD44 exist due to extensive alternative splicing of the 
19 exons comprising the gene that encodes CD44 [4]. 
Principally, CD44 functions as an adhesion molecule, 
mediating cell-cell and cell-extracellular matrix interac-
tions by binding to hyaluronan. CD44 can also activate 
many intracellular signaling pathways and has been 
implicated in cell proliferation, cell differentiation, cell 
migration, cell motility, angiogenesis and metastasis 
[4,108]. CD44 is critical for the maintenance and sur-
vival of leukemic CSCs by keeping these cells in con-
tact with their supportive niche cells [109,110]. CD44 
has also been used either alone or in combination as a 
cell surface marker distinguishing putative CSC popu-
lations across a variety of tumor types [15,18,21,23] in-
cluding ovarian cancer [30-35,111].

Several reports investigating the possible use of 
CD44 as a prognostic marker in ovarian cancer have 
yielded conflicting results, with CD44 expression 
linked to both favorable and unfavorable outcomes 
[112-115]. This discrepancy may be dependent on the 
CD44 isoform analyzed.

In addition, CD44 could provide a putative ther-
apeutic target for delivery of novel hyaluronan-pacli-
taxel copolymers aimed at reducing tumor burden in 
ovarian malignancies [116]. Actually, the therapeutic 
potential of anti-CD44 agents has been highlighted by 
experiments in which targeting of CD44 using specific 
antibodies, antisense, and CD44-soluble proteins sig-
nificantly reduces the proliferative and malignant ca-
pabilities of various cancer subtypes [108].

CD117/c-KIT

The c-kit proto-oncogene encodes a type III recep-
tor tyrosine kinase (CD117/c-KIT). The kinase activity 
of CD117 is stimulated by binding of its ligand stem cell 
factor (SCF), which results in the activation of multiple 
transcription factors that control various cellular pro-
cesses including cell proliferation, cell differentiation, 
apoptosis and cell adhesion [4].

Zhang et al. [31] reported that dual positive 
CD44+CD117– cells comprised the ovarian CSC popu-
lation in primary human ovarian tumors. It was shown 
that rare fractions of spheroids derived from dissociated 
primary human ovarian tumor cells and maintained un-
der stem cell-selective conditions possessed self-renew-
al capacity, over-expressed stem cell markers (Bmi-1, 
stem cell factor, Notch-1, Nanog, nestin, ABCG2, and 
Oct-4) and were resistant to current chemotherapeutic 
drugs (cisplatin and paclitaxel) [31]. Moreover, these 
sphere-forming cells were tumorigenic and could be se-
rially propagated in nude mice in vivo generating tumors 

CD 133

The transmembrane glycoprotein CD133 (prom-
inin-1, PROM1, AC133) was originally identified in 
hematopoietic stem cells [98,99]. Several investigators 
have identified CD133 as a potential CSC marker in the 
solid tumors of brain [17], prostate [25,100], pancreas 
[101], liver [102], colon [19,20], and more recently in 
the endometrium [103,104] and ovary [105,106].

Ferrandina et al. [105] were the first to identify 
CD133 expression in primary human ovarian cancer. In 
this study, CD133 expression was much higher in pri-
mary human ovarian tumors as compared to its expres-
sion in normal ovary, benign ovarian tumors and omen-
tal metastases. The identified CD133+ cells were almost 
completely (<1%) non-endothelial in nature, based on 
the absence of vascular endothelial growth factor recep-
tor 2 (VEGF-R2), endoglin (CD105) and VE-cadherin. 
Moreover, CD133+ ovarian tumor cells possessed in-
creased clonogenic and proliferative capacities com-
pared to their CD133– counterparts. However, this 
study did not identify any relationship between CD133 
expression and clinicopathologic features of the dis-
ease. Furthermore, the same investigators reported that 
CD133 expression did not correlate with increased time 
to progression of disease or decreased overall survival 
in 160 primary ovarian cancer patients [106].

A few years ago, Baba et al. [107] showed that 
CD133+ cells derived from ovarian cancer cell lines di-
vide asymmetrically in vitro, generating both CD133+ 
and CD133– progeny. Moreover, CD133+ cells exhib-
ited increased resistance to platinum-based therapy and 
were more tumorigenic in vivo then their CD133– coun-
terparts. The same group also determined that expression 
of CD133 was epigenetically regulated through histone 
modification and promoter methylation. Similarly, Cur-
ley et al. [35] reported that tumor-derived sorted CD133+ 
cell populations have an increased tumorigenic capacity 
than CD133– cells, and they are capable of regenerating 
a heterogeneous tumor that is similar to the original pa-
tient-derived tumor.

In in vitro model, as well as in in vivo model, Ku-
sumbe et al. [34] found that CD133+ cells contribute to 
the establishment of tumor vasculature that is critical 
for tumor cell survival during disease progression. Us-
ing mouse models, the same investigators demonstrated 
that these cells are actively recruited by functional CSCs 
for generating tumor microvessels through neovasculo-
genesis [34].

CD44

CD44 is a single chain transmembrane glycopro-
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roles in the control of infection, tissue renewal and repair 
and have also been implicated in tumor formation. After 
stimulation, cell surface TLR recruits interleukin-1 (Il-1) 
receptor associated kinase via MyD88, thus inducing ac-
tivation of the nuclear factor kappa B (NFKB) and mito-
gen activated protein kinase signaling pathways [4,117].

In their study, Alvero et al. [32] identified cells 
from ascites and solid ovarian tumors which were char-
acterized by CD44+, MyD88+ expression, NFKB activ-
ity, cytokine and chemokine production, high capacity 
for repair, chemoresistance to conventional chemother-
apies, resistance to tumor necrosis factor α-mediated 
apoptosis, capacity to form spheroids in suspension, and 
ability to recapitulate the original tumor in vivo. Ovar-
ian CSCs expressing TLR4 and MYD88 would thereby 
respond to TLR4 ligands by activating NFKB, suggest-
ing that the TLR4 pathway may play a critical role in 
the process of aberrant repair/differentiation triggered 
by the CSCs [82]. Another report [33] from the same 
research group indicated that CD44+/VE-cadherin–/
CD34– cells in ovarian cancer, which they termed Type 
I EOC cells, could serve as progenitors for tumor vascu-
larization. This report also indicated that this neovascu-
larization process was I kappa B kinase-beta (IKK-beta) 
dependent, but independent of VEGF.

Therapeutic implications

One of the greatest clinical challenges and the 
most important causes of failure in EOC treatment is the 
development of chemoresistance. A significant number 
of patients that initially respond to standard combina-
tions of surgery and chemotherapy later develop a re-
current, therapy-resistant lethal disease [2,6]. The CSC 
hypothesis maintains that even if a small number of 
CSCs remain after therapy, disease recurrence can oc-
cur. In contrast, if CSCs are eliminated, the possibility 
of recurrent disease is minimal [73].

To date, three principal methods for eradicating 
CSCs have been proposed: direct targeting of CSCs, 
induction of CSC differentiation/proliferation, and de-
struction of the supportive niche/stromal microenvi-
ronment [4].

Direct targeting of cancer stem cells

Drugs designed to target CSCs may be effective 
therapeutic agents. Whereas there is overlap in cell sur-
face marker expression and signaling pathways associ-
ated with normal stem cells and CSCs, these drugs must 
sufficiently discriminate between these populations to 
prevent off-target effects [4].

histologically similar to their original primary tumors. In 
this study, expression of CD44 and CD117 was shown to 
be enriched in these non-adherent spheroids. Prospective 
fluorescence-activated cell sorting (FACS) and injec-
tion assays of primary and spheroid-derived xenograft 
ovarian tumor cells indicated that rare subpopulations of 
CD44+/CD117+ cells comprised a highly tumorigenic 
population in primary human ovarian cancer [31].

Recently, Kusumbe and Bapat [111] used the vital 
membrane-labeling dyes PKH67/PKH26 to identify a 
quiescent cell subpopulation in the A4 cell line estab-
lished from malignant ascites from a patient with high-
grade serous ovarian adenocarcinoma [29], as well as 
commercial human tumor cell lines NT2, PA1, HL60, 
C6, U87, and T47D. The authors proposed that EOCs 
consist of three distinct populations: (1) label-retaining 
PKHhi cells, suggested to be slow-cycling/quiescent - 
the candidate EOC stem cells; (2) PKHlo cells that un-
dergo partial label dilution, indicative of limited divi-
sions - the candidate tumor progenitor cells; and (3) 
PKHneg cells that undergo total dye quenching, sugges-
tive of consecutive, rapid divisions - “differentiated” 
tumor bulk cells [111]. Metastases-derived cells also 
showed three presented fractions. PKHhi cells showed 
CSC characteristics, such as self-renewal, high tumor-
forming ability in xenograft assays, and the expression 
of stem-related markers Oct4, Nestin, Nanog, Bmi, 
CD44, and c-Kit. The identification of EOC stem cells 
as label-retaining PKHhi cells that undergo reversible 
quiescence through functional assay of clonogenicity 
in vitro and tumorigenicity in vivo provided the first in-
dication of their involvement in tumor dormancy [111].

However, there have been conflicting reports re-
garding CD117 expression in ovarian cancer. Although 
Szotek et al. [30] determined that SP cells derived from 
the mouse ovarian cancer cell line MOVCAR7 were 
enriched for c-KIT expression, their parallel analyses 
of human ovarian cancer cell lines and ascites-derived 
cells indicated no positive c-KIT expression. In their 
screening of multiple human ovarian primary and as-
cites tumor cells and xenografts derived from human 
ovarian tumors, Curley et al. [35] detected no significant 
expression of CD117 in any source. The discrepancy in 
CD117 expression in ovarian tumors may be due to dif-
ferences in the specific antibodies used or the methods 
of tumor propagation employed (in vitro spheroid cul-
ture vs. direct in vivo propagation).

MyD88

Myeloid differentiation factor 88 (MyD88) is an 
intracellular adaptor molecule associated with the Toll-
like receptor (TLR) signaling pathway. TLRs play critical 
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CSCs to differentiate would deplete tumors of the drug-
resistant populations. Also, inducing CSC proliferation 
would make the cells sensitive to destruction by stan-
dard chemotherapy.

Destruction of the supportive niche/stromal microen-
vironment

Destruction of the supportive niche/stromal mi-
croenvironment may be potentially useful for therapy. 
The impact of the microenvironment on both promot-
ing and inhibiting tumor growth has been demonstrated 
[130,131]. The extracellular environment is necessary 
for cell growth and intercellular communication, in ad-
dition to various growth factors and chemokines that 
may enhance tumor cell proliferation and invasion. In 
contrast, the microenvironment may also stimulate pro-
duction of antiangiogenic proteins and certain matrix 
metalloproteases that can inhibit tumorigenesis [132]. 
The Hh signaling pathway may promote tumor growth 
through paracrine activation of its surrounding stromal 
microenvironment and thus may provide a putative tar-
get pathway [122,123].

Conclusion

Ovarian cancer is a heterogeneous disease with 
various histological subtypes, and it is highly probable 
that CSCs are involved in EOC development. Despite 
the number of studies attempting to isolate ovarian 
CSCs, no well-characterized ovarian CSC antigen pro-
files have been established. The development of chemo-
resistant disease represents a major obstacle to success-
ful treatment of EOC patients, and the identification of 
a molecular profile of ovarian CSC may aid to the de-
velopment of more effective targeted therapy. A multi-
targeted approach aimed at destroying bulk tumor cells, 
CSCs and their supportive microenvironment may pro-
vide the most efficient way to treat EOC patients.
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