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Summary

Purpose: The transforming growth factor β (TGF-β)/
Smad pathway is implicated in the development of intersti-
tial cells of Cajal. The aim of this study was to examine the 
role of this pathway in human gastrointestinal stromal tu-
mors (GISTs).

Methods: The expression of TGF-β receptor II (TβRII), 
phosphorylated Smad2 (p-Smad2), SnoN, p21WAF1/CIP1 and 
p27KIP1 was examined by immunohistochemistry in 30 hu-
man GISTs in relation to prognostic factors.

Results: TβRII was expressed in 76.9% of the cases. All 

cases were positive for p-Smad2 and SnoN, with significant-
ly higher expression levels in small intestinal compared to 
gastric GISTs. Downregulation of p21WAF1/CIP1 and p27KIP1 
was found in 78.6% and 46.4% of the cases respectively, 
while cytoplasmic expression of p27KIP1 was also noted in 
50% of GISTs.

Conclusions: TGF-β/Smad pathway may contribute 
to GIST pathogenesis. SnoN overexpression and low levels 
of p21WAF1/CIP1 and p27KIP1 may be of importance in GISTs.

Key words: GIST, p27KIP1, p21WAF1/CIP, Smad2, SnoN, 
TβRII

Introduction

GISTs are defined as specific, generally KIT 
(CD117)-positive and KIT or platelet derived growth 
factor receptor A (PDGFRA) mutation-driven mesen-
chymal tumors of the gastrointestinal tract, with a set of 
characteristic histological features including spindle, 
epithelioid, and rarely pleomorphic morphology [1]. 
They occur throughout the gastrointestinal tract from 
the lower esophagus to the anus, with the stomach fol-
lowed by the small intestine being the most common 
sites involved [2]. GISTs are believed to originate from 
the interstitial cells of Cajal (ICCs) or their stem cell-
like precursors [2-4].

TGF-β family of cytokines plays important roles 
in the regulation of mammalian cell growth, differen-
tiation, and cancer [5]. Upon ligand binding, the type 
II receptor (TβRII) phosphorylates the type I recep-
tor, which mediates downstream signaling through the 
family of Smad proteins [5]. The active TGF-β receptor 

complex phosphorylates Smad2 and Smad3 which then 
form heteromeric complexes with a common mediator, 
Smad4, and subsequently translocate into the nucleus 
where they activate or repress transcription of TGF-β 
target genes [5]. Smad complexes are subject to posi-
tive and negative regulation by several mechanisms and 
SnoN, a member of the Ski family of oncoproteins, was 
recently identified as a negative regulator of TGF-β sig-
naling, via interacting with Smad proteins and repress-
ing their transcriptional activity [6,7].

TGF-β signaling pathway exerts significant com-
plex effects in carcinogenesis and has been considered 
as both a tumor suppressor pathway and promoter of 
tumor progression and invasion [8,9]. TGF-β is a po-
tent inducer of growth inhibition in several cell types. 
Aberrations in components or downstream mediators 
of TGF-β signaling pathway such as TβRII, Smads and 
the cyclin-dependent kinase inhibitors (CDKIs) have 
been shown to contribute to the loss of TGF-β growth 
inhibitory function and are frequently observed in hu-
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90° C. Detection was performed using the Envision detection kit 
or the CSAII biotin-free tyramide amplification system (DAKO) 
according to the manufacturer’s instructions. Diaminobenzidine 
(DAB) was used as the chromogen for visualization. Slides were 
counterstained with hematoxylin, subsequently dehydrated and 
mounted. As negative control, blocking solution was added instead 
of the primary antibody. Cases of colorectal carcinoma were used 
as positive control.

Immunohistochemical evaluation

All slides were assessed by two independent pathologists who 
were blinded to the case. Cytoplasmic and nuclear staining, where 
observed, were evaluated separately. Immunoreactivity for TβRII, 
p-Smad2 and SnoN was scored on a scale of 0-3, depending on the 
intensity of staining and the percentage of positive cells. Staining 
intensity was graded as 0 (negative), 1 (weak), 2 (moderate), and 3 
(strong). The percentage of positive cells was scored as 0 (<1%), 1 (1-
25%), 2 (25-50%) and 3 (50-75%) and 4 (75-100%). The two scores 
were multiplied and the immunoreactivity score (values from 0-12) 
was classified as follows: score 0 as negative; score 1 (multiplication 
values 1,2) as weakly positive; score 2 (multiplication values 3,4,6) 
as moderately positive and score 3 (multiplication values 8,9,12) as 
strongly positive. Nuclear staining for p21WAF1/CIP1 and p27KIP1 were 
evaluated based on the percentage of positive cells. According to pre-
viously published reports, p21WAF1/CIP1 and p27KIP1 expression was 
considered positive when more than 10% of tumor cells showed nu-
clear immunoreactivity [12,13]. Cytoplasmic expression of p27KIP1 
was considered positive when more than 10% of tumor cells showed 
cytoplasmic immunoreactivity

Statistical analysis

Statistical analysis was performed with the SPSS for Win-
dows, release 12.0 (SPSS Inc, Chicago, IL, USA). The significance 
of differences among groups of clinicopathological parameters (tu-
mor location, Fletcher and Miettinen criteria of malignant behavior, 
mitotic count, tumor size) was evaluated using the non-parametric 
Kruskal-Wallis or Mann-Whitney tests. Correlations between ex-
pression of proteins were investigated using the Spearman rank-
order correlation coefficient. All ranking tests were performed with 
correction for ties. The significance level was defined as p < 0.05.

Results

TβRII is frequently expressed in GISTs

In adjacent non-tumoral areas, expression of 
TβRII was observed in gastrointestinal epithelial cells, 
endothelial cells, nerves and scattered stromal cells 
(Figure 1A, 1B). TβRII expression was positive in 20 
out of 26 (76.9%) GISTs. The staining of tumor cells 
was cytoplasmic and granular, as previously reported in 
other types of tumors (Figure 1C). Weak immunoreac-
tivity (score 1) was found in 6/26 of the cases (23.1%), 
moderate immunoreactivity (score 2) was observed in 
6/26 (23.1%) of the cases studied, and strong staining 
(score 3) was found in 8/26 (30.8%) of the cases. There 
was no significant correlation of TβRII expression with 

man cancer [8,9]. However, TGF-β also functions as tu-
mor promoter through its effects on tumor cell invasion 
and alterations in tumor microenvironment [8]. Further 
clarifying how specific alterations in TGF-β signaling 
pathway contribute to the development and progression 
of human cancer could provide novel opportunities for 
targeted anticancer therapies.

A fairly recent study showed that Smad3-null mice 
demonstrate a marked reduction, or even absence, of the 
ICCs in the colon together with a concomitant reduction 
of intestinal smooth muscle layer thickness, suggesting 
that the TGF-β/Smad signaling pathway is implicated in 
the development and differentiation of ICCs [10]. How-
ever, little is known about the effect of TGF-β signaling 
on GISTs. Taking the above into consideration, we inves-
tigated the expression of TβRII, phosphorylated Smad2 
(p-Smad2) and SnoN in GISTs in relation to prognostic 
factors. We also evaluated the expression of the CDKIs, 
p21WAF1/CIP1 and p27KIP1, known downstream targets of 
the TGF-β /Smad signaling pathway [11].

Methods

Tissue samples

Paraffin-embedded tissue samples from 30 primary human 
GIST cases were retrieved from the archives of the Department of 
Pathology, General Hospital “Agios Andreas” Patras, Greece. He-
matoxylin & eosin (H&E) sections were reviewed by 2 independent 
reviewers. The tumors’ locations were the stomach (12 cases; 40%) 
small intestine (14 cases; 46.7%), rectum-anus (1 case; 3.3%), while 
some of them presented as mesenteric deposits/intraabdominal mass 
(3 cases; 10%). Tumors were sub-classified according to their mi-
totic count and size. Based on Fletcher’s et al. consensus criteria [1], 
8 cases were of low-risk, 8 of intermediate risk and 14 of high risk. 
Based on Miettinen’s et al. criteria [2], separating the biological be-
havior of gastric and small intestinal GISTs, 2 (6.7%) cases were of 
very low malignant potential, 9 (30%) cases of low malignant po-
tential, 6 (20%) cases of intermediate malignant potential and 13 
(43.3%) of high malignant potential. All of the cases were strongly 
positive for KIT (CD117). None of the patients had received treat-
ment with imatinib mesylate. All research was conducted according 
to the institutional ethical standards.

Immunohistochemistry

Immunohistochemistry for SnoN was performed using a rab-
bit polyclonal anti-SnoN antibody (1:80, Santa Cruz Biotechnology, 
Inc., Santa Cruz, CA, USA) as previously described [10]. Immu-
nostaining for TβRII (1:100, Santa Cruz Biotechnology), p-Smad2 
(1:1000, Chemicon, Millipore, Billerica, MA, USA), p21WAF1/CIP1 
(1:25, DAKO, Glostrup, Denmark) and p27KIP1 (1:180, Thermo 
Fisher Scientific, Fremont, CA, USA) was performed using an au-
tomatic staining system (DAKOautostainer, DAKO). Briefly, for 
deparaffinization, rehydration and antigen retrieval, representative 
4 μm tissue sections were treated with DAKO target retrieval solu-
tion PH 9 in a DAKO pressure cooker (PT, DAKO) for 15 min at 
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activation of p-Smad2, such as SnoN overexpression 
and low nuclear levels of p21WAF1/CIP1 and p27KIP1, 
may be of importance in human GISTs.
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