
Ovarian cancer (OC) is the second most common gyneco-
logical cancer and the deadliest in industrialized countries, 
with poor outcomes that indicate an urgent need to provide 
a greater insight into the molecular mechanisms underly-
ing OC. Insights into the complex tumor microenviroment 
show that besides tumor islets, OC biomarkers can derive 
from newly formed blood vessels that have endothelial cells 
with a different molecular signature in comparison with 

their normal counterparts. In this view, recent research has 
been able to highlight promising candidates such as CDCP1 
and ADAM12. Our present review summarises their impli-
cations in cancer progression with a focus on OC. 
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OC is the second most common gynecological 
cancer and the deadliest in industrialized coun-
tries, with survival rates that have remained un-
changed despite recent advancements [1]. 

Poor outcomes indicate an urgent need to 
provide a greater insight into the molecular 
mechanisms underlying OC, to develop improved 
diagnostic and prognostic biomarkers, guiding 
treatment protocols, and helping the development 
of targeted therapies [2,3]. Angiogenesis, as part of 
the tumor microenvironment, has been validated 
in clinical trials as a potential target, so far with 
modest benefits in patient outcome and research 
still in progress [4,5]. 

Insights into the complex tumor microenviro-
ment show that besides tumor islets, OC biomark-
ers can derive from newly formed blood vessels 

that have endothelial cells with a different molec-
ular signature in comparison with their normal 
counterparts [6]. 

It is known that tumor vasculature offers new 
possibilities for diagnosis and therapy through its 
gene expression that is different from the normal 
vasculature.

A recent high throughput approach on tumor 
vascular markers in OC, has been able to high-
light novel genes with transmembrane localised 
protein products that could represent promising 
candidates such as CDCP1 and ADAM12, with an 
average expression significantly higher in tumors 
[7].

Our present review summarises CDCP1 and 
ADAM12 implications in cancer progression with 
a focus on ovarian malignancy, highlighting their 
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utility as prognostic biomarkers. In our search, full 
length articles published between 2000-2014 in 
Web of Science and PubMed were retrieved using 
the following search words: “CDCP1”, “ADAM12”, 
“cancer”, “ovarian”, “angiogenesis”, “endothelial”, 
“biomarker”, “prognosis”. Relevant articles found 
within the cited bibliography were also retrieved. 

CDCP1

CUB domain-containing protein 1 (CDCP1) 
was first identified as a novel gene overexpressed 
in lung and colon cancer [8], also known as 
transmembrane and associated with src kinases 
(TRASK) [9], subtractive immunization associat-
ed 135 kDa protein (SIMA135) [10], gp140 [11] or 
CD318. 

CDCP1 is a 836 amino acid, type I transmem-
brane protein that consists of a signal peptide of 
29 amino acids, a larger extracellular domain of 
636 amino acids, heavily glycosylated with three 
regions that have a low homology to C1r/C1s, 
urchin embryonic growth factor, and bone mor-
phogenetic protein 1 (CUB) domains, a transmem-
brane and a cytoplasmic domain of 21 and 150 
amino acids, respectively [8-10]. 

The cytoplasmic domain includes five con-
served tyrosine residues that act as a substrate 
of Src Family Kinases (SFK) such as Src, Fyn and 
Yes for subsequent phosphorylation. This leads to 
the formation of a multiprotein complex consist-
ing in SFK, protein kinase C δ (PKCδ) and CDCP1, 
the latter acting as a scaffold structure for two 
important kinases, and indicates a functional role 
in tumor cell metastasis [9,10,12,13]. More re-
cently, is has been demonstrated that following 
plasmin-induced cleavage of the extracelular do-
main of full length 135 kDa CDCP1 leads to ty-
rosine phosphorylation of the membrane-retained 
70 kDa fragment with subsequent formation the 
SFK:PKCδ:CDCP1 multiprotein complex. The 65 
kDa proteolytic shed ectodomain could represent 
an alternative signalling pathway, with subse-
quent molecular functions and could also serve 
as a serum biomarker, consistent with immuno-
histochemical positive stainings within the lu-
men of colonic crypts [14]. In line with this view, 
CDCP1 was investigated as a suitable biomarker 
for serum detection in OC due to its expression 
on the tumor vascular endothelium. There was 
an increasing difference in CDCP1 serum levels 
in patients with normal, benign, and malignant 
ovarian pathology as demonstrated in a relatively 
small cohort [7]. 

Membrane-type serine protease 1 (MT-SP1), 

which is upregulated in many other cancers in-
cluding OC, was identified as one of the serine 
proteases responsible for CDCP1 cleavage [9,14]. 
As part of the intracellular CDCP1 signaling axis, 
downstream activation of the pro-survival mole-
cule Akt and Akt-induced tumor cell colonisation 
has been onserved, that is frequently detected in 
OC and can be targeted to disrupt tumor progres-
sion [15,16]. 

In several studies, high CDCP1 expression in 
tumor tissues has been linked to a decreased re-
currence and/or overall survival in pancreatic [17], 
renal [18,19] and lung [20] cancer. However, in 
two papers low levels of CDCP1 have been linked 
to a poor patient outcome in endometrial adeno-
carcinoma [21] and esophageal squamous cell car-
cinoma [22]. In a recent publication that analyzed 
conflicting survival curves of CDCP1 expression 
level in various tumor localisations using public 
databases it was emphasized that CDCP1 function 
might vary among different malignancies and de-
mands a more carefull analysis [22]. 

Investigating Oncomine Cancer Profiling Da-
tabase and the Gene Expression Omnibus reposi-
tory Emerling et al. showed that a significant over-
expression of CDCP1 in at least three autonomous 
microarray datasets is found in OC among other 
malignancies such as bladder, breast, colorectal, 
kidney, and pancreatic carcinomas in comparison 
with their corresponding normal tissues [23]. 

In a recent paper, Dong et al., investigated 
epidermal growth factor (EGF)/epidermal growth 
factor receptor (EGFR) signaling axis as a possible 
modulator of CDCP1 expression in OC cell lines 
due to their common role as promoters in cell mi-
gration [24]. They reported that following EGF/
EGFR activation, the RAS/RAF/MEK/ERK pathway 
is responsible for CDCP1 increased expression and 
localisation in the cellular projections of migrat-
ing cells, highlighting CDCP1 as a posible target 
in cancers resistant to anti-EGFR therapy. In the 
authors’ opinion, besides SFK phosphorylation, 
the EGF/EGFR axis was the third reported modu-
lating mechanism, possibly converging with the 
second previously described mechanism in renal 
cancer involving the stabilisation of hypoxia-in-
ducible factors [19]. Similarly, use of tumor condi-
tioned media (TCM) generated under hypoxic con-
ditions in HUVEC cultured cells lead to a greater 
upregulation of CDCP1 mRNA expression than in 
cells cultured with normoxic TCM [7]. In a recent 
report activator protein 1 (AP-1) was suggested as 
a potential link between CDCP1 overexpression 
and the RAS/ERK pathway due to its enhancement 
by ERK activity and by the fact that the promoter 
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region of CDCP1 contains three complementary 
docking sites for AP-1, thus mediating the met-
astatic traits of the RAS/ERK signaling axis [25]. 

Assessment of data demonstrating that tissue 
plasminogen activator mediates CDCP1 cleavage 
in a lung cancer metastasis model validated in vit-
ro, in vivo and in clinical samples [26] as well as 
another report in which a high presurgical plasma 
concentration of tissue plasminogen activator is 
an independent factor for decreased overall sur-
vival in patients with OC [27] could suggest an 
important role for CDCP1 in OC progression. 

Recent evidence shows that CDCP1 was over-
expressed in 74% of high grade serous OC, as eval-
uated through immunohistochemistry and absent 
in normal ovarian tissue. Experimental downreg-
ulation of CDCP1 leads to a reduced cell migration 
in vitro and the use of a targeted anti-CDCP1 mon-
oclonal antibody in a patient derived xenograft 
significantly reduced tumor burden in vivo [28]. 

The available literature data regarding the 
CDCP1 investigated tissue expression in different 
types of cancer is presented in Table 1.

ADAM12

ADAM12 is part of a family of type I trans-
membrane proteins that include a disintegrin and 
a metalloproteinase domain expressed in all an-
imal organisms in their structure [29]. ADAMs 
have been associated with a variety of physiolog-
ical processes in embryogenesis and in patholog-
ical conditions such as various malignancies, in-
flammatory conditions, rheumatoid arthritis and 
Alzheimer’s disease. Following the same structure 

of ADAM proteins, ADAM12 includes the subse-
quent sequence of domains, beginning with the 
extracellular N-terminus end: a signal peptide, a 
pro-domain that retains the metalloproteinase do-
main inactive until processing, a zinc-dependent 
metalloproteinase domain, a disintegrin domain, a 
cysteine-rich domain, an epidermal growth factor 
like domain, a transmembrane domain and a intra-
cellular tail [29]. As an active protease, ADAM12 
has been implicated in the EGFR and insulin-like 
growth factor signaling. Furthermore, its role 
in cancer cell dissemination could be attributed 
to functions in cell adhesion through syndecans 
that trigger β1 integrin-dependent mesenchy-
mal cell spreading [30]. The intracellular domain 
of ADAM12 seems to play a role in transmitting 
two-way cellular signals over the cellular mem-
brane. ADAM12 contains several binding sites for 
the SH3 domain-containing proteins, and inter-
actions with the c-Src tyrosine kinase have been 
demonstrated [31]. 

ADAM12, through alternative splicing, is 
found in two forms, ADAM12-L, a membrane 
anchored form, and ADAM12-S, a secreted form, 
lacking the transmembrane and cytoplasmic do-
mains. Its expression has been found upregulat-
ed in several malignancies such as breast, colon, 
lung and gastric carcinomas in comparison with 
normal tissues through immunohistochemistry 
and reverse transcriptase-polymerase chain re-
action [32]. Increased amounts of ADAM12 have 
been detected in bladder cancer, and the mRNA 
level correlated with disease status, decreased 
after surgery and increased when the tumor re-
lapsed [33]. 

Table 1. CDCP1 investigated tissue expression in different types of cancer

CDCP1 localization First author [Ref]

Bladder Emerling et al.[23]

Breast Bhatt et al.[9], He et al.[14], Sawada et al.[22], Emerling et al.[23]

Cervix He et al.[14]

Colon and rectum Scherl-Mostageer et al.[8], Sawada et al.[22], Emerling et al.[23]

Endometrium Mamat et al.[21]

Esophagus Sawada et al.[22]

Kidney Awakura et al.[18], Razorenova et al.[19], Emerling et al.[23]

Lung Scherl-Mostageer et al.[8], Uekitaet al.[13], Sawada et al.[22], 
Uekita et al.[25], Lin et al.[26]

Ovary Sasaroli et al.[7], Emerling et al.[23], Dong et al.[24], 
Harrington et al.[28]

Pancreas Miyazawa et al.[17], Emerling et al.[23]

Prostate He et al.[14], Casar et al.[15]

Skin Hooper et al.[10]
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Overexpression of ADAM12 has also been 
highlighted in hepatocellular carcinomas and liv-
er metastases from colorectal cancers in contrast 
to benign focal nodular hyperplasia and normal 
liver at the mRNA level [34]. In the same study, 
ADAM12 mRNA and protein expression have 
been shown to be significantly upregulated by 
TGF-β in culture conditions, probably through 
PI3K and ERK1/2 pathways [34]. 

A study that included 71 patients with breast 
cancer and 46 women in the control group showed 
that urine levels of ADAM12 significantly in-
creased with tumor stage and that gelatin, type 
IV collagen and fibronectin as members of the 
extracellular matrix can represent substrates for 
ADAM12 proteolysis, suggesting its role in neo-
plastic disease progression and matrix plasticity. 
It has also been postulated that the proteolytic ac-
tivity could influence certain growth factors such 
as IGF and HB-EGF that are known to contribute 
to the progression of neoplastic processes [35]. In 
particular, activated GPCR stimulates the proteo-
lytic activity of ADAM12 through Eve-1, leading 
to ectodomain shedding of the membrane-bound 
form of proHB-EGF, resulting in a soluble mole-
cule capable of EGFR transactivation in an auto-
crine or paracrine manner [36]. Further research 
showed that ADAM12 exhibits a differential ef-
fect, increasing tumor cell resistance to apopto-
sis while increasing apoptosis in stromal cells in 
breast carcinoma [37]. 

Investigating the known EGFR signaling 
pathway in human glioblastomas, it was demon-
strated that membrane anchored ADAM12 is 
selectively overexpressed and correlated with 
proliferation activity, thus suggesting its role in 
EGFR activation through shed HB-EGF [38]. 

Interestingly, in a study where anti-ADAM12 
antibodies were incubated with gastric cancer cell 
lines, 4 out of 5 cell lines exhibited an increased 
proliferative effect, probably through activation of 
Src family kinases, known to bind the intracellu-
lar SH3 binding motif of ADAM12 [39].

EGFR in known to have an important role 
in tumorigenesis and studies assessing its over-
expression in OC have reported a prevalence of 
30-98%, affecting progression free and overall 
survival. The intracellular cascade of events trig-
gered by EGFR activation are correlated with cel-
lular hyperplasia, dissemination, angiogenesis 
and apoptosis resistance [40] by at least 5 different 
pathways (PI3K/Akt, Ras/p44/42/MAPK, MEKK/
p38 MAPK, PLC/PKC, Rho-GEF/RhoA) [41]. EGFR 
targeted therapy in OC, either by monoclonal an-

tibodies or tyrosine kinase inhibitors, has been 
investigated in several phase I/II clinical trials 
with modest results in an unselected patient co-
hort, indicating the need for a future personalised 
translational approach [40]. 

In OC patients, increased levels of lysophos-
phatidic acid (LPA) have been detected in the in-
traperitoneal fluid and have been postulated to 
play an important role in tumor progression. LPA 
is generated from membrane substrates by phos-
pholipases and is recognized as a potent mitogen 
involved in cell cycle progression and its effects 
are mediated by specific LPA G-protein coupled 
receptor. The key ligand responsible for EGFR ac-
tivation in OC was recognized as HB-EGF follow-
ing LPA-induced proteolysis of pro-HB-EGF [42]. 
Multiple positive feedback loops were suggested 
in the same study involving EGFR activation in 
OC cells leading to augmented transcription and 
shedding of HB-EGF and increased phospholipase 
activity contributing to an increased production 
of LPA, that finaly activates EGFR by HB-EGF 
shedding. 

In another study involving 108 patients with 
OC or normal ovaries, HB-EGF levels were signifi-
cantly increased in advanced tumor stage in com-
parison with normal ovaries and its expression 
significantly correlated with progression free sur-
vival. m-RNA expression for ADAM 9,10,12 and 
17 was evaluated. ADAM12 showed increasing 
values for mRNA expression index of 7.84±11.49, 
18.1±37.7, 23.0±39.0 in normal ovary (n=40), OC 
stage I-II (n=26) and OC stage III-IV (n=42), re-
spectively, but not significantly. However, there 
was a significant correlation between mRNA ex-
pression indices for ADAM12 and HB-EGF [43]. 

A HB-EGF neutralizing antibody, Y-142, 
showed a superior in vitro neutralizing activity of 
cell proliferation and angiogenesis in SK-OV-3 OC 
cell line in comparison with cetuximab and beva-
cizumab and could have the potential to be imple-
mented into selected targeted therapies [44]. 

In a comprehensive review of ADAM12, op-
portunities for targeting ADAM12 have been 
highlighted. The catalytic domain could be tar-
geted by synthethic protease inhibitors, mutated 
TIMP endogenous inhibitors or function blocking 
antibodies and the ADAM prodomain could also 
play an interesting role while the other domains 
of ADAM12 could also represent attractive tar-
gets [45]. Investigating an OC dormancy and re-
currence model in two OC cell lines, it was deter-
mined that the anti-angiogenic TIMP3 gene was 
overexpressed during dormancy and diminished 
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during recurring growth through an epigenetic 
mechanism [46], providing evidence for its role as 
a possible therapeutic modulator. 

The role of the tumor microenviroment as 
a critical player in neoangiogenesis and OC pro-
gression started to be explored only in the last 
few years, due to its potential as a therapeutic tar-
get, given its relative genetic stability [47]. The 
expression of ADAM12 has largely been evaluat-
ed within tumor cells. The tumor microenviron-
ment represents an important element in cancer 
expression and within the few studies that eval-
uated stromal expression of ADAM12 some in-
consistencies have been reported, indicating that 
stromal expression could depend on the examined 
tissues and/or species [31]. 

A study that examined gene expression differ-
ences in purified endothelial cells from 10 fresh 
tissue samples of stage III/IV invasive serous 
OC and 5 normal ovaries defined a specific gene 
expression signature in which ADAM12 was up-
regulated 7.6-fold in OC specimens in comparison 
with normal ovary [48]. 

ADAM12 has also been shown to be ex-
pressed in tumor-related vessels of breast cancer 
specimens in comparison with negative results 
in normal breast tissue. In the same study it was 
demonstrated that ADAM12 mediates proteolysis 

of endothelial specific substrates such as Tie-2 and 
VE-cadherin with potential implications in neoan-
giogenesis and tumor cell migration through the 
vessel wall [49].

Table 2 displays published data regarding the 
ADAM12 investigated tissue expression in differ-
ent types of cancer.

Conclusion

Our review summarizes the available litera-
ture data regarding two transmembrane proteins 
with multiple pathway interactions, within the OC 
microenvironment. CDCP1 is a regulator of cell 
metastasis and invasion, while overexpression of 
ADAM12 has also been shown to promote tumor 
growth and progression, with successful attempts 
of targeted inhibition in experimental settings. 
Additional work is required to better characterize 
their role as prognostic biomarkers and possible 
targets for personalized molecular therapy. 
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Table 2. ADAM12 investigated tissue expression in different types of cancer

ADAM12 localization First author [Ref]

Bladder Frohlich et al.[33]

Brain Kodama et al.[38]

Breast Iba et al.[32], Roy et al.[35], Kveiborg et al.[37], Frohlich et al.[49]

Colon Iba et al.[32], Le Pabic et al.[34]

Stomach Iba et al.[32], Carl-McGrath et al.[39]

Liver Le Pabic et al.[34]

Lung Iba et al.[32]

Ovary Sasaroli et al.[7], Serio et al.[41], Tanaka et al.[43], Lu et al.[48]
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