
Colorectal cancer (CRC) is the third most common cancer 
worldwide and despite the abundance of molecular path-
ways and markers continually being reported, the mortality 
rates remain high. Hypoxia inducible factor 1alpha (HIF-
1α) plays a major role in the response of tumors to hypoxia, 
and contributes to tumor aggressiveness, invasiveness and 
resistance to radiotherapy and chemotherapy. Targeting 
HIF-1α is an attractive strategy, with the potential for dis-
rupting multiple pathways crucial for tumor growth. 

In the current study, HIF-1α immunohistochemical ex-
pression in CRC is reviewed along with the relation to clin-
ical outcome and prognosis. In addition, the significant 
correlation of HIF-1α to vascular endothelial growth factor 

(VEGF) expression is reported, as well as the possible role of 
HIF-1α in predicting the therapeutic response to anti-EGFR 
therapies.

Herein, an overview of the HIF-1α expression in CRC is 
presented. This review delineates the crucial role that HIF-
1α plays in carcinogenesis, tumor angiogenesis and cancer 
progression. The evaluation of HIF-1α in patient biopsies 
could be useful as a prognostic and/or predictive biomarker 
in personalized cancer treatment.

Key words:  angiogenesis, colorectal carcinoma, HIF-1α, 
immunohistochemistry, prognosis

Summary

HIF-1α in colorectal carcinoma: review of the literature
Maria Ioannou1, Efrosyni Paraskeva2, Korina Baxevanidou1, George Simos3, Roidoula 
Papamichali1, Constantina Papacharalambous1, Maria Samara1, George Koukoulis1

1Department of Pathology, 2Department of Physiology, 3Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 
Larissa, Greece

Correspondence to: Maria Ioannou, MD, PhD. Department of Pathology, Faculty of Medicine, University of Thessaly, Biopolis, 
Larissa 41110, Greece. Tel: +30 2410685645, E-mail: mioan@med.uth.gr
Received: 16/12/2014; Accepted: 30/01/2015

CRC is the third most common cancer, and 
is highly rated among factors resulting to cancer 
patient mortality [1]. CRC is the collective descrip-
tion of related diseases, emerging through the 
accumulation of aberrations leading to genomic 
- chromosomal instability, microsatellite instabil-
ity (MSI), CpG island methylator phenotype, as 
well as genomic mutations of tumor suppressor 
genes and tumor oncogenes, microRNAs, and epi-
genetic changes [2,3]. As cancer progresses, inva-
sion and metastases are established through the 
epithelial-mesenchymal transition with addition-
al genetic alterations [2-4]. The subcellular mo-
lecular events which characterize these pathways 
have been exploited clinically in the diagnosis, 
screening and management of CRC and emerg-
ing biomarkers for early disease detection and 
risk stratification (diagnostic markers), prognosis 

(prognostic markers) and the prediction of treat-
ment responses (predictive markers) have been 
developed [5].

This review outlines the current evidence 
on the role of Hypoxia-Inducible Factor 1 (HIF-
1) and especially its subunit HIF-1α in CRC. His-
topathological evidence of HIF-1α expression is 
presented along with the possible involvement in 
carcinogenesis, prognosis and tumor progression. 
In addition, the correlation of HIF-1α expression 
to the prediction of treatment response is also re-
viewed.

Tumor hypoxia

The fast proliferation of cancer cells in a solid 
tumor can outgrow the supply of nutrients and 
oxygen provided by the tumor poorly formed vas-
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culature. This results to the development of a hy-
poxic tumor microenvironment, which could be 
expected to curtail further tumor growth. Howev-
er, hypoxic tumors have been shown to be more 
resistant to radiotherapy and chemotherapy and 
are associated with poorer prognosis [6]. Adapta-
tion of cancer cells to hypoxia allows evasion of 
apoptosis or necrosis, sustained proliferation and 
increased migratory behavior. Moreover, hypoxia 
triggers metabolic reprogramming that causes tu-
mor acidosis and stimulation of angiogenesis that 
allows sustained oxygenation and facilitates me-
tastasis [7]. Direct detection of intratumoral hy-
poxia is possible by measuring pO2 with the help 
of oxygen electrodes but is invasive and limited 
by the clinical settings. An indirect but easier and 
increasingly used way is to monitor for the ex-
pression of hypoxia-inducible endogenous marker 
proteins. The most important of these are the α 
subunits of the hypoxia-inducible factors (HIFs). 
HIFs are heterodimeric transcription factors reg-
ulating the expression of hundreds of genes that 
respond to low oxygen levels [8,9]. The regulato-
ry HIF-α subunit is often overexpressed in cancer 
cells either because of the ensuing tumor hypoxia 
or because of genetic changes occurring during 
malignant transformation. HIFs mediate the tran-
scriptional program causing the aforementioned 
adaptive behavior of cells inside hypoxic tumors 
and, as expected, HIF-α overexpression is asso-
ciated with increased tumor aggressiveness and 
higher patient mortality [10]. Both in vitro and in 
vivo studies have shown that targeting HIFs, espe-
cially in combination with traditional of antian-
giogenic treatments, can be an effective way to 
restrict cancer cell and tumor growth [11,12]. 

HIF-1α

Three forms of HIFs are known: HIF-1, HIF-2 
and HIF-3. They contain distinct HIF-α isoforms 
(HIF-1α, HIF-2α and HIF-3α, respectively) and a 
common beta subunit (HIF-1β or ARNT), which 
is constitutively expressed. In contrast, protein 
expression levels of the HIF-alpha subunits are 
largely regulated by oxygen levels. HIF-1α is ex-
pressed in all tissues under hypoxia and is the 
best-studied isoform and prototype of the family. 
Expression of HIF-2α is more tissue-specific and 
its function can overlap or be distinct from that of 
HIF-1α [13]. HIF-3α is poorly characterized. 

According to the currently accepted model, 
HIF-1α is undetectable under physiological condi-
tions because, although it is produced constantly, 
it is very rapidly and efficiently degraded by the 

proteasome. This process requires hydroxylation 
of two proline residues in the oxygen-depend-
ent degradation domain (ODDD) of HIF-1α by a 
family of prolyl-hydroxylases (PHDs) that use 
molecular oxygen as substrate and also require 
2-oxoglutarate, ascorbate (vitamin C) and iron for 
activity. These hydroxylations mediate interaction 
of HIF-1α with the von Hippel-Lindau (pVHL) tu-
mor-suppressor protein, a component of an ubiq-
uitin ligase complex [14,15]. As a result, HIF-1α 
becomes polyubiquitylated and is targeted to the 
proteasome for proteolysis. Under hypoxia, lack of 
oxygen causes inactivation of the PHDs and, con-
sequently, HIF-1α is stabilized and accumulates 
inside the cell, translocates inside the nucleus and 
associates with HIF-1β to form an active HIF-1 
complex that recognizes and binds to hypoxia-re-
sponse DNA elements (HREs), thereby inducing 
transcription of hypoxia-target genes. The genes 
activated by HIF-1 include genes coding for pro-
teins involved in the uptake and metabolism of 
glucose (such as GLUT-1 and glycolytic enzymes), 
erythropoiesis (e.g. erythropoietin), angiogenesis 
(e.g. VEGF), regulation of extracellular pH (e.g. CA 
ΙΧ) and many other processes that contribute to 
cancer cell proliferation, invasion and metastasis. 

Apart of HIF-1α stabilization, oxygen also 
represses its transcriptional activity through an 
asparaginyl hydroxylase, called factor inhibiting 
HIF-1 (FIH), which modifies the C-terminal do-
main of HIF-1α [15]. Inhibitors of PHDs and FIH, 
such as 2-oxoglutarate analogs, oxidants that de-
plete ascorbate, heavy metals and iron chelators 
can stabilize HIF-1α and, therefore, imitate hypox-
ia by triggering a partially similar transcriptional 
response (called pseudohypoxia). Finally, HIF-1α 
expression and activity can be also upregulated 
by oxygen-independent mechanisms activated 
by oncogenes (such as EGFR, RAS and BRAF) or 
growth factors that stimulate the MAPK, mTOR 
and PI-3K/Akt pathways and by the lack of tumor 
suppressors such as VHL and PTEN [12,13].  

HIF-1α in CRC

The literature for HIF-1α expression in CRC 
was systematically reviewed, using the terms “hy-
poxia inducible factor AND colorectal carcinoma” 
OR “HIF AND colorectal carcinoma” from 2003 to 
2014. The inclusion criteria were: a) evaluation of 
colorectal cancer prognosis based on HIF-1α ex-
pression and b) application of immunohistochem-
istry. The main details of the studies focusing on 
HIF-1α in CRC are demonstrated in Table 1.
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Table 1. Presentation of the studies regarding colorectal carcinoma that assessed HIF-1 alpha in relation to 
prognosis
First author (year) 
[Ref]

Sample size/type HIF-1alpha related remarks Significant 
association
with adverse 

outcomes
Pez et al. 
2001[52]

LS174Tr, Hct116, HT29/ hu-
man colon cancer cell lines 

BALB/c nude mice

LOX and HIF-1a act synergistically  to promote tumorigenesis. Yes

Jiang et al. 
2003[18]

71 colorectal neoplasms  
(9 cases of colorectal adeno-

ma and 62 CRC)

In  CRC, decreased levels of PTEN are associated with increased 
expression of HIF-1a mRNA and VEGF protein.

Yes

Krishnamachary 
et al. 2003[23] HCT-116 cells

HIF-1α overexpression is related to increased transcription of 
genes (Vimentin K14/k18/K19,  Fibronectin 1, MMP2, uPAR, 

Cadhesin D, AMF), the protein products of which contribute to 
basement membrane invasion.

Yes

Koukourakis  et 
al. 2005[62] 75/ CRCs

LDH5 expression is significantly associated with HIF-1 α and 
HIF-2α accumulation, as well as with high tumor grade and met-

astatic tumor behavior.

Yes

Kaidi et al. 
2006[49]

HCT116 (human colon can-
cer cells), SW480,   HEK293 
(human embryonic kidney 

cells)

β-catenin interacts with HIF-1a and is significant contributor  to 
colorectal tumorigenesis.

Yes

Wincewicz et al. 
2007[50]

123/CRCs Non-mucinous  CRCs expressed  HIF-1a and GLUT-1 with a 
greater frequency than mucinous CRCs.

Yes

Van der Bilt et al. 
2007[54]

BALB*/c mice
*Laboratory bred strain of 

albino mice.

Prolonged tissue hypoxia and thus stabilization of HIF-1a plays 
a crucial  role in the altered behavior of micrometastases in the 

liver after ischemia/reperfusion.

Yes

Furlan et al. 
2008[60]

78/CRCs Significantly high levels of HIF-1α mRNA were observed in 33% 
of CRCs, while overexpression of HIF-1α protein was detected in 

77% of the tumors.

Yes

Rajaganeshan et 
al. 2008[61]

52/CRCs HIF-1α expression is significantly related  to poor prognosis and 
overall survival. VEGF was also a crucial predictor of disease 

recurrence in primary CRCs.

Yes

Fan  et al. 
2008[21]

LS174T cell cultures HIF-1α and survivin are  significantly expressed in invasive 
CRCs.

Yes

Roberts et al. 
2009[65]

HCT116 cells (DN) HIF-1a has an important role in inhibiting  oxaliplatin sensitivity 
in HCT116 cells.  In monolayers, oxaliplatin was less effective in 

hypoxic relatively to aerobic cells.

Yes

Rajaganeshan et 
al. 2009[58]

55/ Metastatic CRCs Positive connection is observed between  HIF-1α and VEGF, and  
HIF-1α and VHL  in primary CRC. No correlation is observed 

between  HIF-1α and either Glut-1 or CA-9.
Yes

Sulkowska et al. 
2009[59]

108/CRCs HIF-1α is detected in 85% (92/108) of CRCs and  is coexpressed 
with  GLUT-1 and TGF-beta 1.

Yes

Chen et al. 
2009[66]

2984/CRCs (metanalysis) Overexpression of  HIF-1α and  HIF-2α  are strongly associated 
with poor prognosis in CRC.

Yes

Baba et al. 
2010[68]

731/CRCs (metaanalysis) HIF-1α not only stimulates angiogenesis by upregulating mul-
tiple proangiogenic factors, including VEGF, but also promotes 

colon cancer cell invasion by regulating proteins such as MMP2, 
cathepsin D, vimentin, TGFA and PTGS2.

Yes

Zhao et al. 
2010[53]

LS174T, RKO, SW1116, 
SW620/CRC cell lines

Galectin-1, a direct target of HIF-1a, mediates the hypoxia-in-
duced migration and progression of CRC.

Yes

Shioya et al. 
2011[64]

50/ Rectal adenocarcinoma
HIF-1α expression is associated with poor prognosis after
hyperthermo-chemoradiotherapy  (HCRT) for rectal cancer.

Yes

Rigopoulos et al. 
2010 [47]

60 paraffin embedded pri-
mary CRC

Significant association between VEGF and HIF-1α . Deregulation 
of EGFR/VEGF/HIF-1α pathway in CRC

Yes

Murono et al. 
2012[63]

HT-29, SW480/ Human 
colorectal cancer cells

SN-38 inhibits the expression of  HIF-1α in cancer cells and can 
overcome chemoresistance under hypoxic conditions of colon 

cancer cells.
Yes

Shimomura et al. 
2013[57]

64/CRLM (resection of col-
orectal liver
metastasis)

Mutant PIK3CA induces the expression  of   HIF-1α.  Significant 
expression of  HIF-1α and VEGF is observed  in liver metastasis 
as well as in the primary tumor. Overexpression of HIF-1a is an 

independent risk factor for recurrence.

Yes

Zhang et al. 
2014[56]

Cells with/ without DFX 
treatment.

DFX  induces  HIF-1α expression. The latter induces epitheli-
al-mesenchymal transition (EMT) in solid tumors.

Yes
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The role of HIF-1α in colorectal car-
cinogenesis

The development of CRC is a complex and 
heterogeneous process arising from an interac-
tion between multiple etiological factors, includ-
ing genetic factors and environmental factors, 
such as diet and lifestyle. Over the last 25 years, 
remarkable progress has been made in under-
standing its biological and molecular features and 
in elucidating the steps involved in colon carcino-
genesis. This, in turn, has led to improved treat-
ment of CRC. While colorectal adenoma is the 
most frequent precancerous lesion, other poten-
tially premalignant conditions, including chronic 
inflammatory bowel diseases and hereditary syn-
dromes, such as familial adenomatous polyposis, 
Peutz-Jeghers syndrome and juvenile polyposis, 
are differentially localized along the gastrointes-
tinal tract with an overall incidence of less than 
5% [16]. Recently, significant progress has been 
made in the characterization of genetic and epi-
genetic alterations in CRC genomes in support 
of the genomic view of colorectal carcinogene-
sis. Like other types of human solid tumors, CRC 
exhibits a variety of genomic alterations ranging 
from small-scale changes (i.e., point mutations or 
small deletions) to large-scale chromosomal copy 
number changes or rearrangements [17]. Some of 
these alterations may contribute to the develop-
ment of colorectal carcinogenesis, but the entity 
of causal genomic alterations in CRC genomes is 
still to be discovered. 

Overexpression of HIF-1a in CRC

HIF-1α (mRNA and/or protein) is detected in 
both adenomas and colorectal adenocarcinomas, 
and is more frequently expressed in adenocar-
cinomas compared to adenomas, as shown in a 
number of immunohistochemical studies [18-20]. 
HIF-1α expression is also frequently correlated 
with disease stage, as shown in relative recent 
studies [19,21-23].

Accordingly, 66.7% of CRC in comparison to 
12.25% of colorectal  adenoma tissue microarrays 
were found positive for the expression of HIF-1α 
by immunohistochemistry. Moreover, the expres-
sion HIF-1α was significantly higher in patients 
with stage III than in patients with stage I – II  
CRC [21]. 

Moreover, Jiang et al. studied the expression 
of HIF-1α mRNA and vascular endothelial growth 
factor (VEGF) protein, by in situ hybridization and 

immunohistochemistry respectively, in 71 cas-
es of colorectal neoplasms (9 cases of colorectal 
adenoma and 62 cases of CRC) [18]. They showed 
a significant increase of HIF-1α mRNA in adeno-
carcinomas and significant differences in HIF-1α 
mRNA and VEGF expression between adenomas 
and CRC. The levels of HIF-1 were positively cor-
related with VEGF expression. There was also a 
significant difference in the expression of both 
HIF-1α and VEGF in accordance with Dukes stage, 
and the level of HIF-1α and VEGF expression was 
significantly higher in Dukes stages C and D than 
that of Dukes stages A or B [18]. In the same study 
HIF-1α and VEGF expression was significantly as-
sociated with decreased levels of the tumor sup-
pressor PTEN, indicating the involvement of the 
PI3K/Akt/FRAP (FKBP rapamycin-associated pro-
tein) pathway in the upregulation of HIF-1α [18]. 
In addition, Beltaziak et al. studied the immuno-
histochemical expression of HIF-1α in 125 CRCs 
and showed significant correlations regarding its 
expression with tumor grade and stage  [18].

Finally, Simiantonaki et al. systematically in-
vestigated the expression of HIF-1α in CRC devel-
opment, by analyzing HIF-1α protein expression 
in normal colonic mucosa, hyperplastic polyps 
(HPP), sessile serrated adenomas (SSA), low-grade 
(TA-LGD) and high-grade (TA-HGD) traditional 
adenomas as well as in non-metastatic and met-
astatic CRC, by immunohistochemistry and West-
ern blot [19]. They found that HIF-1α was not ex-
pressed in normal mucosa, HPP and TA-LGD, but 
showed perinuclear and nuclear accumulation in 
half of the examined SSA and TA-HGD, and nu-
clear overexpression in all investigated CRCs. Al-
though the overexpression of nuclear HIF-1α in 
CRCs was significant compared to the premalig-
nant lesions, there was no significant correlation 
of HIF-1α with the metastatic status [19]. 

The finding that HIF-1α is present in adeno-
mas along with its significantly higher expression 
in CRC and correlation with disease stage, point 
to the fact that the expression of HIF-1α occurs 
in early stages of CRC and escalates with tumor 
progression in the invasive stage. Thus, HIF-1α 
overexpression in adenomas probably represents 
an early stage of carcinogenesis, prior to angio-
genesis or invasion.  In a different line of thought, 
the detection of HIF-1α in the surface epithelium 
of the colorectal mucosa [20,24] is suggestive of a 
possible role of HIF-1α in the physiology of nor-
mal colon tissue, apart from its role in CRC.

HIF-1α is also suspected to be involved in in-
flammatory events related to CRC, as suggested 
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by its periinflammatory expression, which could 
contribute indirectly to the acquisition of a meta-
static phenotype. Ιn support of this notion, the ex-
pression of HIF-1α is linked to inflammation not 
only in CRC specimens but also in in vitro studies, 
where it was shown that the proinflammatory li-
popolysaccharide (LPS) induced HIF-1α expres-
sion and nuclear translocation in CRC cell lines 
[19]. Moreover, HIF-1α overexpression in colon 
carcinoma cell lines has been shown to increase 
cell invasion in a Matrigel assay [23]. 

Von Hippel Lindau and HIF-1a

An alternative mechanism that can lead to 
HIF-1α overexpression, besides hypoxia or upreg-
ulation of signal transduction pathways, is loss 
of Von Hippel Lindau (VHL) expression. The re-
duction or loss of VHL in later stages of CRC is 
accompanied with upregulation of HIF-1α [24]. 
Moreover, Kuwai et al. examined  paraffin-em-
bedded tumors and identified 13 mutations in the 
coding region of the VHL gene in 11.4% of the 
specimens. Immunohistochemistry of the spec-
imens showed that tumors bearing 7 of the 13 
VHL mutations were also characterized by high 
HIF-1α protein expression, suggesting the possi-
ble role of VHL loss in the upregulation of  HIF-1α  
in CRC [25]. This suggestion is supported by an 
earlier study showing frequent allelic loss of VHL 
in CRCs but not in adenomas [26].   

APC, beta-catenin and HIF-1a

Adenomatous polyposis coli (APC), a tumor 
suppressor involved in the regulation of beta-cat-
enin, has been recently found to mutually an-
tagonize HIF-1α.  HIF-1α directly regulates APC 
mRNA and protein levels, while APC represses 
HIF-1α through a beta-catenin l and nuclear fac-
tor-kappa B - dependent mechanism [27].  This has 
the implication that downregulation of APC by 
HIF-1α further enhances the increased survival of 
tumor cells at hypoxic conditions and vice versa, 
and loss of function APC mutations promotes sur-
vival by inducing HIF-1α and thus, a hypoxic re-
sponse [28]. Since APC is mutated in most CRCs, it 
could be an important factor in the progression of 
colorectal tumors even at the early stages [27-29]. 

As mentioned above, beta-catenin is yet an-
other important factor in CRC pathogenesis that 
interacts with HIF-1α. Interestingly, the interplay 
between beta-catenin and HIF-1α in CRC is not re-
stricted to its regulation by APC. It has also been 
shown earlier that beta-catenin interacts with 

HIF-1 α and enhances the transcription of HIF-1 
target genes, and thus, the hypoxic response and 
tumor cell survival [30]. 

HIF-1α and angiogenesis in CRC

The function of HIF-1 is multifaceted and can 
be oncogenic or tumor-suppressive in a tumor 
type-specific fashion [31]. In CRC, HIF1-α appears 
to promote oncogenesis via distinct mechanisms. 
Among them, HIF-1 mediates tumor angiogene-
sis, a critical factor for the development and pro-
gression of CRC. 

Angiogenesis in CRC has been shown to be 
induced by HIF-1α through the activation of ex-
pression of the HIF-1 target gene VEGF [32-35]. 
Indeed, the activation of the HIF-1α/VEGF path-
way in CRC tissue specimens has been shown in a 
number of studies using immunohistochemistry 
[19,36-38]. Moreover, VEGF mRNA and protein 
expression levels correlate with vascularity and 
disease progression in CRC [32,33,39-42].

      Importantly, angiogenesis as well as HIFs’ 
expression are poor prognostic factors and have 
been associated to worse survival rates in CRC 
patients [41,43]. HIF-1 mediated VEGF expression 
increases survival of colon cancer cells in culture 
under hypoxic conditions, dependent on the ex-
pression of a functional VEGFR-2 (KDR receptor). 
Calvani et al. showed that colon cancer cells dif-
ferentially express a functional VEGF/KDR/HIF-
1α autocrine loop that mediates survival under 
hypoxic conditions [44]. These results show that: 
(a) VEGF mediates survival of hypoxic HCT116 
colon cancer cells in a HIF-1α–dependent fashion; 
(b) colon cancer cells can differentially express a 
functional KDR receptor; and (c) the presence of 
a functional response to VEGF may be associated 
with the outcome of anti-VEGF therapies in colon 
cancer patients [44]. 

Furthermore, a positive correlation between 
VEGF and VEGFR-2 expression has been identi-
fied in biopsies of patients with CRC [36], while 
agents such as bevacizumab, that target VEGF and 
its receptors, are included in the repertoire of CRC 
treatment [45]. 

However, there is more to the role of HIF in 
CRC angiogenesis, than the direct activation of 
well-established angiogenic genes like VEGF. In a 
recent study performed in a CRC cell line, HIF-1α 
appeared to act in synergy with epidermal growth 
factor (EGF), for the upregulation of a distinctive 
subgroup of genes, potentially promoting angio-
genesis [46]. Rigopoulos et al. have also demon-
strated significant association between VEGF 
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and HIF-1α expression, as well as deregulation 
of EGFR/VEGF/HIF-1α signalling pathway in co-
lon adenocarcinoma tissue microarrays [47]. In 
addition, Thomaidis et al. investigated the role 
of multiple biomarkers of the epidermal growth 
factor receptor (EGFR-) and VEGFR pathways on 
the treatment outcome in patients with stage II/
III CRC [48]. They showed that an adjuvant ther-
apy containing irinotecan might be beneficial for 
AREG/EREG ligands of EGFR-negative, PTEN-pos-
itive and HIF-1α-negative patients. The authors 
suggested further prospective studies including 
a large number of patients with stage II/III CRC 
in order to evaluate which molecular patterns 
might serve as predictive markers for treatment 
outcome in these patients [48].

HIF-1α and CRC prognosis 

In a number of studies, HIF-1α expression 
has been shown to promote tumor progression 
by modulating the expression of genes associat-
ed with tumor growth and survival as well inva-
sion, metastases and resistance to chemotherapy 
[18,19,24,49-66]. However, there is no consensus 
regarding HIF-1α expression and CRC prognosis, 
as a number of studies show relatively heteroge-
neous results. From a pathological point of view, 
this could be attributed, at least in part, to differ-
ences in the mode of HIF-1α histopathological 
evaluation and differences in the type of antibody 
used, influence of fixation delay and perioperative 
ischemia, as there are currently no standardized 
methods to evaluate HIF expression by immuno-
histochemistry [67]. The inconsistency could also 
be to some extent attributed to the relatively small 
number of patients examined in many studies.

Most importantly, a large study by Baba et 
al., examining 731 CRC specimens, demonstrated 
that HIF-1α overexpression was independently 
associated with poor prognosis [68]. These re-
sults indicate that HIF-1α expression correlates 
with aggressive biological behavior of CRC. In 
the same study, HIF-2α expression was unrelated 
with clinical outcome and showed no significant 
prognostic role. Considering that HIF and relat-
ed pathways are attractive therapeutic targets 
and that HIFs interact with many other pathways, 
these findings may have considerable clinical im-
plications [68].

Valuable information on the association be-
tween HIF and CRC prognosis can be deduced 
from a meta-analysis by Chen et al. [66]. The au-
thors combined the outcomes of 23 studies com-
prising 2984 CRC patients, in order to examine 

the association between HIF-1α and HIF-2α ex-
pression, CRC prognosis and clinicopathological 
features. The results indicated significant associa-
tion of HIF overexpression with increased mortal-
ity risk, including overall and disease free surviv-
al. Importantly, sensitivity analysis showed that 
the association did not change after removing any 
of the 23 studies. Moreover, in subgroup analysis, 
overexpression of both HIF-1α and HIF-2α was as-
sociated with worse prognosis. Further subgroup 
analysis revealed an association of overexpressed 
HIF-1α with disease progression and unfavora-
ble prognosis in Asian CRC patients. The analysis 
also indicated that the two HIF isoforms showed 
distinct clinicopathologic features; in contrast to 
HIF-1α, overexpression of HIF-2α did not corre-
late with disease progression and prognosis in 
these patients. However, HIF-2α was, unlike   HIF-
1α, significantly associated with grade of differen-
tiation.  

Large studies involving many patients are 
necessary in order to delineate the significance 
and the role of HIF-1α expression in immunohis-
tochemistry specimens of CRC biopsies.

HIF-1α and targeted therapy 

The molecular characteristics of CRC have 
been the target of recent research efforts, which 
have broadened our understanding of CRC patho-
biology and facilitated the identification of CRC 
subtypes [2,4,67]. This categorization of CRC based 
also on clinical criteria has helped to outline new 
therapeutic options and improve CRC treatment 
outcome [5,70,71]. The new therapies include bi-
ological agents such as monoclonal antibodies 
against VEGF and EGFR inhibitors. HIF-1α ex-
pression has been studied in correlation to these 
factors in different groups of patients. Studies re-
garding anti-VEGF therapies have been discussed 
previously. In the following paragraphs we review 
the association between HIF-1α and anti-EGFR 
regimens in CRC.

EGFR has been identified as an oncogene in 
many different tumors, including CRC. Overex-
pression of EGFR is common; 65–70% of CRCs 
are EGFR-positive, and is more frequent in ad-
vanced-stage tumors [72]. In this context, EGFR 
is a front-line target in metastatic CRC treatment. 
Pharmacological inhibitors include monoclonal 
antibodies (cetuximab and panitumumab) and ty-
rosine-kinase inhibitors (gefitinib and erlotinib), 
which impede EGFR mediated signal transduction 
and have been proven valuable tools in CRC treat-
ment [73]. There is evidence that the antitumor ef-
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fects of the EGFR-blocking antibody cetuximab may 
be mediated through inhibition of the PI3K path-
way, which in turn leads to downregulation of HIF-
1α synthesis and activity [73-75]. Furthermore, the 
discovery of KRAS mutations and aberrations in re-
lated proteins, such as BRAF, PTEN, and PIK3-AKT, 
highlight a group of patients who may be resistant 
to anti-EGFR antibodies [5,77-79]. 

Indeed, in addition to the connection of HIF 
and EGFR, a unique interaction between KRAS 
and hypoxia has been also documented [80,81]. Re-
cently, Kikuchi et al. demonstrated that mutually 
exclusive mutations of KRAS and BRAF have dif-
ferent effects on the induction of HIF-1α and HIF-
2α in colon cancer cell lines. This study showed 
that oncogenic KRAS induced HIF-1α primarily at 
the level of translation in a PI3K-dependend man-
ner. In contrast, oncogenic BRAF enhanced the 
mRNA expression of HIF-1α and HIF-2α, as well 
as HIF-2α protein synthesis. The distinct mode of 
HIF-1 and HIF-2 regulation by KRAS and BRAF 
mutants in colon cancer cells could account for 
the differences observed between colon tumors 
bearing KRAS and BRAF mutations [82].

The elucidation of the interactions between 

signaling molecules involved in CRC appears to be 
the strategy of choice for the treatment of patients 
with different CRC subtypes. In this context, fur-
ther experimental studies are necessary to clarify 
the mechanisms that differentially regulate the 
hypoxia response system involving HIF-1 in CRC. 

Conclusion

Hypoxia is involved in CRC and the role of 
HIF-1α is being thoroughly studied. Although 
the development of appropriate methods to ac-
curately measure hypoxia in tumors, as well as 
the establishment of consensus for HIF-1α eval-
uation in tissue samples still remains a chal-
lenge for the future, a growing body of data sup-
ports the involvement of HIF-1α in various CRC 
aspects. HIF, also through interplay with cellu-
lar signal transduction pathways, is involved in 
carcinogenesis, tumor angiogenesis and cancer 
progression. These findings argue that the in-
troduction of HIF-1α inhibitors in combination 
with existing treatments or other new-targeted 
therapies in the treatment of CRC patients may 
be very useful clinically. 
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