
Purpose: The purpose of this study was to identify can-
didate single-nucleotide polymorphisms (SNPs) that might 
play a role in susceptibility to pancreatic cancer, elucidate 
their potential mechanisms, and generate SNP-to-gene-to-
pathway hypotheses. 

Methods: A genome-wide association study (GWAS) data-
set of pancreatic cancer that included 496,959 SNPs from 
3,851 pancreatic cancer patients and 3,934 control subjects 
of European descent was used in this study. The Identify 
candidate Causal SNPs and Pathways (ICSNPathway) 
method was applied to the GWAS dataset. 

Results: ICSNPathway analysis identified 18 candidate 
SNPs, 11 genes (including HNF1A and HNF4G), and 30 
pathways, which revealed 11 hypothetical biological mecha-
nisms. The strongest hypothetical biological mechanism was 
one wherein rs2230739 alters the role of ADCY9 in various 

pathways and processes, including cyclase activity, phospho-
rus oxygen lyase activity, hsa04912, hsa04540, hsa04020, 
and hsa00230 (0.010 ≤ p < 0.001; 0.038 ≤ false discovery rate 
(FDR) ≤ 0.016). The second strongest mechanism was that 
rs16859886 modulates ADCY10 to affect its role in pathways 
including cyclase activity, phosphorus oxygen lyase activity, 
nucleobase, nucleoside, and nucleotide metabolic processing, 
and hsa00230 (0.010 ≤ p < 0.001; 0.038 ≤ FDR ≤ 0.016).  

Conclusions: By using the ICSNPathway to analyze 
pancreatic cancer GWAS data, 18 candidate SNPs, 11 
genes (including ADCY9, ADCY10, HNF1A, and HNF4G), 
and 30 pathways were identified that might contribute to 
the susceptibility of patients to pancreatic cancer.
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Pancreatic cancer is a malignant neoplasm 
originating from transformed cells arising in the 
pancreas. Pancreatic cancer is the fourth most 
common cause of cancer-related deaths in the 
United States and the eighth worldwide [1], and 
has an extremely poor prognosis. The 5-year rela-
tive survival rate is 6%, all stages combined [1,2]. 
Although pancreatic cancer is complex and het-
erogeneous, and its etiology has not been deter-
mined, a genetic component of susceptibility to 
pancreatic cancer was established by case–control 
and family studies [3,4]. Previous studies have 
discovered that SNPs were highly associated with 
pancreatic cancer within genes such as KRAS, 
BRCA1, 2, PALB2, STK11/LKB1, PALB2, PRSS1, 

SPINK1, and CDKN2A [3,4].  
GWASs offer a powerful means to search for 

genes that confer susceptibility to complex dis-
eases [5]. As a result, an increasing number of 
GWASs are being reported, and this has led to the 
discovery and validation of novel disease genes 
[6]. Although large-scale GWASs have been car-
ried out on complex diseases, including pancre-
atic cancer, many genetic components that con-
tribute to variation in pancreatic cancer remain 
unexplained. 

Available data suggest that individual genes 
and genetic variants make small-risk contribu-
tions to pancreatic cancer susceptibility by inter-
acting with each other. Although some genetic 
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signals have been examined at the single marker 
level in pancreatic cancer GWASs, the biological 
mechanisms identified remain controversial [7]. A 
key challenge in interpreting GWAS data is iden-
tifying causative SNPs and providing evidence 
for the hypothetical mechanisms that could be re-
sponsible for the observed traits [8-10]. Thus, we 
hypothesized that using a novel method to study 
existing GWAS datasets could provide additional 
insights and identify new candidate genes. The 
ICSNPathway method was developed to identify 
candidate SNPs and their corresponding candi-
date pathways using GWAS data together with 
integrated linkage disequilibrium (LD) analysis, 
functional SNP annotation, and pathway-based 
analysis (PBA) [11]. 

We applied ICSNPathway analysis to a pan-
creatic cancer GWAS dataset to identify candidate 
causal SNPs and mechanisms of pancreatic can-
cer susceptibility, and to generate SNPto-gene-to-
pathway hypotheses. 

 

Methods

Study population  

We used a publicly available pancreatic cancer 
GWAS dataset from NCBI dbGap (http://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000206.v3.p2), which included the genotypes of 
543,436 SNPs obtained from the Illumina 610 Quad In-
finium genotyping assay. The dataset comprised 3,851 
pancreatic cancer patients and 3,934 controls of Euro-
pean descent. Pancreatic cancer cases were drawn from 
12 cohort studies and 8 case–control studies. The data-
set was filtered to remove individuals with p<0.001 for 
Hardy–Weinberg violation, and a call rate of <98% to 
reduce the effect of genotyping errors. In all, 496,959 
SNPs passed the quality control filters. 

Identification of candidate causal SNPs and pathways 

ICSNPathway analysis was carried out in 2 stages 
[11]. The first stage involved the pre-selection of can-
didate causal SNPs by LD analysis and functional SNP 
annotation based on the most significant SNPs. The 
second stage involved annotating the biological mech-
anisms to preselected candidate causal SNPs using the 
PBA algorithm i-GSEA (improved gene-set enrichment 
analysis) [11]. 

A full list of pancreatic cancer GWAS SNP p values 
was entered into the ICSNPathway analysis. One con-
cept applied in the ICSNPathway analysis is LD analy-
sis, which searches for the most significant SNPs in LD 
within a GWAS dataset to identify more possible candi-
date causal SNPs based on an extended dataset, includ-
ing HapMap data [12]. The other method involves the 
use of functional SNPs. ICSNPathway analysis pre-se-

lects candidate causal SNPs based on functional SNPs, 
which are important for understanding the underlying 
genetics of human health. Functional SNPs are defined 
as SNPs that may alter protein or gene expression, or 
the role of a protein in the context of a pathway. They 
include deleterious and non-deleterious non-synony-
mous SNPs, SNPs that cause the gain or loss of a stop 
codon, those resulting in a frame shift, and SNPs lo-
cated in essential splice sites or in regulatory regions. 

The ICSNPathway server applies the i-GSEA PBA 
algorithm to the full list of GWAS SNP p values to 
detect the pathways associated with individual traits. 
Briefly, the process is as follows. (1): Each SNP is 
mapped to its nearest gene according to the localiza-
tion of the SNP and the gene in the Ensembl 61 data-
base (http://www.ensembl.org/biomart/martview), and 
the maximum t = −log(p-value) values of SNPs mapped 
to genes are assigned to represent those genes. Then, 
all genes are ranked by decreasing representative t val-
ues. (2): For each pathway S, the enrichment score (ES, 
i.e., a Kolmogorov–Smirnov-like running-sum statistic 
with weight [α]) is calculated, which measures the ten-
dency for genes of a pathway to be located at the top of 
the ranked gene list. (3): The ES is then converted to a 
significant-proportion-based ES (SPES) by multiplying 
the ES by m1/m2, where m1 is the proportion of signif-
icant genes for pathway S (defined as genes mapped 
with at least one SHLP in the top 5% of the most sig-
nificant SNPs in the GWAS), and m2 is the proportion 
of significant genes for all genes in the GWAS. (4): SNP 
label permutation and normalization are used to gen-
erate the distribution of SPES and to correct for gene 
variation (bias caused by different genes with different 
numbers of mapped SNPs) and pathway variation (bias 
due to different pathways with different numbers of 
genes). (5): Based on the distribution of SPES values 
generated by the permutation, a nominal p value is cal-
culated, and a false discovery rate (FDR) is computed 
for multiple testing correction. 

The term “the most significant SNP” refers to SNPs 
with a p value below a certain threshold, which can 
be specified from the GWAS SNP p values. The ICSN-
Pathway was used to analyze the significant pathways 
from the original GWAS when we chose the p value 
threshold (<1x10-3) used in the study. Two parameters 
were set for the analysis. The first was “within gene,” 
meaning that only p values of SNPs located within 
genes were used in the PBA algorithm. The second was 
an FDR cutoff (0.05) for multiple testing corrections. 
Control of the FDR is preferred for large-scale testing. 
Defined as the expected proportion of false-positives 
among all significant tests, it allows researchers to 
identify a set of “candidate positives,” a high propor-
tion of which are likely to be true-positives. The FDR, a 
permutation-based approach for multiple comparisons, 
was used to identify statistically significant genes. 
There were no specific criteria used to select the num-
ber of genes. We used cut-offs of a minimum of 2 and 
maximum of 500 to avoid very narrow or very broad 
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functional categories. We discarded pathways that con-
tained more than 500 genes to avoid stochastic bias 
and the inclusion of a general biological process. Out 
of the several options available for pathway annotation, 
we selected 4 pathway databases: the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [13], BioCarta, gene 
ontology (GO) biological process [14], and GO molec-
ular function. This ensured comprehensive coverage 
of pathways and high-quality information for well-de-
fined pathways. 

SNAP was developed to identify and annotate 
nearby SNPs in LD (proxies) by HapMap (http://www.
broadinstitute.org/mpg/snap/). In this study, we used 
SNAP to (i) find proxy SNPs, (ii) determine whether 
SNP proxies were present in genes, (iii) resolve wheth-
er associations from multiple SNPs represented simi-
lar associations, (iv) plot regional views of associations 
or LD structures, and (v) retrieve annotations for SNPs 
[15]. 

 Results 

Candidate SNPs and pathways identified from the 
pancreatic cancer GWAS 

Using the 496,959 GWAS SNP p values as the 
input and the most significant SNPs (p <1x10-3), 
ICSNPathway analysis identified 18 candidate 
SNPs, 11 genes, and 30 pathways (Tables 1-3; Fig-
ure 1). The top 5 candidate SNPs were rs2230739 
(−log10[p] = 3.066), rs16859886 (−log10[p] = 3.837), 
rs1169288 (−log10[p] = 3.757), rs2464195 (−log10[p] 
= 3.742), and rs2464196 (−log10[p] = 3.997). Two 
of the 5 candidate SNPs (excluding rs16859886, 
rs1169288, and rs2464195) were not in LD with 
any other SNP. SNP rs16859886, which was in 
LD with rs203848 (r2=0.805), was not present in 
the original GWAS dataset. Similarly, rs1169288, 
which was in LD with rs2650000 (r2=0.911), 

Table 1. Candidate causal SNPs

Candidate 
causal SNP Functional class Gene 

Candidate 
causal path-

way* 
−log10(p)†  In LD with r2 D’ −log10(p) § 

rs2230739 Non-synonymous coding ADCY9 1 2 20 23 
26 30 3.066 rs2230739 – – 3.066 

rs16859886 Non-synonymous coding ADCY10 1 2 18 30 – rs203848 0.805 0.897 3.837 

rs1169288 Non-synonymous coding HNF1A 3 7 9 11 19 
25 28 – rs2650000 0.911 1.0 3.757 

rs2464195 Non-synonymous coding HNF1A 3 7 9 11 19 
25 28 – rs735396 1.0 1.0 3.742 

rs2464196 Non-synonymous coding HNF1A 3 7 9 11 19 
25 28 3.997 rs2464196 – – 3.997 

rs2943549 Non-synonymous coding 
& splice site HNF4G 3 4 7 8 9 11 – rs2943547 0.821 1.0 3.133 

rs2272669 Regulatory region HNF4G 3 4 7 8 9 11 – rs1805100 1.0 1.0 4.119 

rs1805100 Regulatory region HNF4G 3 4 7 8 9 11 4.119 rs1805100 – – 4.119 

rs6895902 Non-synonymous coding MAML1 4 7 8 11 28 2.580 rs7734102 1.0 1.0 3.028 

rs7178777 Non-synonymous coding 
(deleterious) NUSAP1 5 3.027 rs7178777 – – 3.027 

rs7178634 Non-synonymous coding 
(deleterious) NUSAP1 5 3.001 rs7178634 – – 3.001 

rs11239430 Regulatory region OR13A1 6 – rs7098434 1.0 1.0 3.004 

rs2215530 Non-synonymous coding 
(deleterious) OR1L4 6 – rs7046355 1.0 1.0 3.227 

rs10985760 Non-synonymous coding 
(deleterious) OR1L6 6 – rs7046355 1.0 1.0 3.227 

rs10818740 Non-synonymous coding OR1L6 6 – rs7046355 1.0 1.0 3.227 

rs773902 Non-synonymous coding F2RL3 
10 12 13 14 
15 16 17 19 
21 22 27 29 

3.401 rs773902 – – 3.401 

rs1805082 Non-synonymous coding NPC1 19 24 25 – rs11663558 0.925 1.0 3.363 

rs1805081 Non-synonymous coding NPC1 19 24 25 3.250 rs1805081 – – 3.250 

SNP: single-nucleotide polymorphism, LD: linkage disequilibrium. *Numbers indicate the indices of pathways (listed in Table 3) 
ranked by significance (false discovery rate). †−log10(p) values of candidate causal SNPs in the original genome-wide association stu-
dies (GWASs). “−” denotes that this SNP was not represented in the original GWAS. §−log10(p) values of SNPs in LD with candidate 
causal SNPs in the original GWAS.
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and rs2464195, which was in LD with rs735396 
(r2=1.0), were not present in the original GWAS 
dataset.  

The biological mechanisms suggest that the 
candidate SNPs may alter the role of the corre-
sponding genes or proteins in the context of path-
way(s) associated with traits. The 18 candidate 
SNPs were included in 30 candidate pathways 

with roles in 11 hypothetical biological mech-
anisms. The strongest hypothetical biological 
mechanism was that rs2230739 alters the role 
of ADCY9 in various pathways and processes, 
including cyclase activity, phosphorus oxygen 
lyase activity, hsa04912, hsa04540, hsa04020, 
and hsa00230 (0.010  ≤ p<0.001; 0.038 ≤ FDR ≤ 
0.016). The second strongest mechanism was that 

Table 2. Functional and association study of genes identified by GWAS pathway analysis

Gene Function

ADCY9
May play a fundamental role in situations where the fine interplay between intracellular calcium and cAMP 
determines the cellular function. May be a physiologically relevant docking site for calcineurin (by similari-
ty).

ADCY10

Soluble adenylyl cyclase that has a critical role in mammalian spermatogenesis. Produces cAMP, which me-
diates, in part, the cAMP-responsive nuclear factors indispensable for maturation of sperm in the epididymis. 
Induces capacitation, the maturational process that sperms undergo prior to fertilization. May be the bicar-
bonate sensor.

HNF1A
Transcriptional activator that regulates tissue-specific expression of multiple genes, especially in the pan-
creatic islet cells and liver. Required for the expression of several liver-specific genes. Binds to the inverted 
palindrome 5’-GTTAATNATTAAC-3’.

HNF4G Transcription factor. Has a lower transcription activation potential than HNF4-alpha.

MAML1

Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced tran-
scription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in 
the nucleus through interaction with CDK8. Binds to CREBBP/CBP, which promotes nucleosome acetylation 
at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to 
nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate 
decisions.

NUSAP1 Microtubule-associated protein with the capacity to bundle and stabilize microtubules (by similarity). May 
associate with chromosomes and promote the organization of mitotic spindle microtubules around them.

OR13A1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers 
the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-cou-
pled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane 
domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition 
and G-protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in 
the genome. 

OR1L4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers 
the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-cou-
pled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane 
domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition 
and G-protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in 
the genome.

OR1L6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers 
the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-cou-
pled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane 
domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition 
and G-protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in 
the genome. 

F2RL3 Receptor for activated thrombin or trypsin coupled to G proteins that stimulate phosphoinositide hydrolysis. 
May play a role in platelet activation.

NPC1 

Intracellular cholesterol transporter, which acts in concert with NPC2 and plays an important role in the 
egress of cholesterol from the endosomal/lysosomal compartment. Both NPC1 and NPC2 function as the 
cellular ‘tag team duo’ to catalyze the mobilization of cholesterol within the multivesicular environment of 
the late endosome (LE) to effect egress through the limiting bilayer of the LE. NPC2 binds unesterified choles-
terol that has been released from LDLs in the lumen of the late endosomes/lysosomes and transfers it to the 
cholesterol-binding pocket of the N-terminal domain of NPC1. Cholesterol binds to NPC1 with the hydroxyl 
group buried in the binding pocket and is exported from the limiting membrane of late endosomes/lysosomes 
to the ER and plasma membrane by an unknown mechanism. Binds oxysterol with higher affinity than cho-
lesterol. May play a role in vesicular trafficking in the glia, a process that may be crucial for maintaining the 
structural and functional integrity of nerve terminals.
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Table 3. Candidate causal pathways

Index Candidate causal pathway Description p FDR 

1 Cyclase activity GO:0009975. Catalysis of a ring closure reaction < 0.001 0.016 

2 Phosphorus oxygen lyase activity GO:0016849. < 0.001 0.017 

3 hsa04950 Maturity onset diabetes of the young  0.002 0.018 

4 Regulation of transcription from 
RNA polymerase II promoter 

GO:0006357. Any process that modulates the frequ-
ency, rate or extent of transcription from an RNA 
polymerase II promoter

< 0.001 0.018 

5 DNA packaging 
GO:0006323. Any process by which DNA and asso-
ciated proteins are formed into a compact, orderly 
structure.

0.007 0.019 

6 hsa04740 Olfactory transduction  0.001 0.019 

7 Regulation of transcription DNA 
dependent 

GO:0006355. Any process that modulates the frequen-
cy, rate or extent of DNA-dependent transcription 0.001 0.020 

8 Transcription from RNA poly-
merase II promoter

GO:0006366. The synthesis of RNA from a DNA 
template by RNA polymerase II (Pol II), originating 
at a Pol II-specific promoter. Includes transcription 
of messenger RNA (mRNA) and certain small nuclear 
RNAs (snRNAs).

< 0.001 0.021 

9 Sequence-specific and DNA-bind-
ing-specific 

GO:0043565. Interacting selectively with DNA of a 
specific nucleotide composition, e.g., GC-rich DNA 
binding, or with a specific sequence motif or type of 
DNA, e.g., promoter binding or rDNA binding.

< 0.001 0.021 

10 Thrombin receptor activity 

GO:0015057. Combining with thrombin to initiate a 
G-protein-mediated change in cell activity. A G-pro-
tein is a signal transduction molecule that alternates 
between an inactive GDP-bound and an active GTP-
bound state.

0.008 0.022 

11 Regulation of RNA metabolism  
GO:0051252. Any process that modulates the frequ-
ency, rate, or extent of the chemical reactions and 
pathways involving RNA.  

< 0.001 0.022 

12 Regulation of body fluid levels GO:0050878. Any process that modulates the levels of 
body fluids. 0.001 0.022 

13 Hemostasis  
GO:0007599. The stopping of bleeding (loss of body 
fluid) or the arrest of the circulation to an organ or 
part. 

0.003 0.023 

14 Blood coagulation  

GO:0007596. The sequential process by which the 
multiple coagulation factors of the blood interact, 
ultimately resulting in the formation of an insoluble 
fibrin clot; it may be divided into three stages: stage 
1, the formation of intrinsic and extrinsic proth-
rombin converting principle; stage 2, the formation 
of thrombin; stage 3, the formation of stable fibrin 
polymers. 

0.003 0.023 

15 Response to wounding  

GO:0009611. A change in state or activity of a cell 
or an organism (in terms of movement, secretion, 
enzyme production, gene expression, etc.) because of 
a stimulus, indicating damage to the organism. 

< 0.001 0.025 

16 Coagulation GO:0050817. The process by which a fluid solution, or 
part of it, changes into a solid or semisolid mass. 0.003 0.025 

17 Response to external stimulus

GO:0009605. A change in state or activity of a cell 
or an organism (in terms of movement, secretion, 
enzyme production, gene expression, etc.) because of 
an external stimulus. 

0.002 0.026 

18 Nucleobase, nucleoside, and nu-
cleotide metabolic process  

GO:0055086. The chemical reactions and pathways 
involving nucleobases, nucleosides, and nucleotides. 0.002 0.027 

19 Regulation of biological quality 

GO:0065008. Any process that modulates the frequency, 
rate or extent of a biological quality. A biological quality 
is a measurable attribute of an organism or part of an 
organism, such as size, mass, shape, color, etc. 

< 0.001 0.029 

Continued on next page
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rs16859886 modulates ADCY10 to affect its role 
in various pathways and processes, including cy-
clase activity, phosphorus oxygen lyase activity, 
nucleobase, nucleoside, and nucleotide metabolic 
processing, and hsa00230 (0.010 ≤ p<0.001; 0.038 
≤ FDR ≤ 0.016). The third mechanism was that 
rs1169288, rs2464195, rs2464196 modulate HN-
F1A to regulate DNA-dependent, sequence-specif-
ic, and DNA–binding-specific transcription, regu-
lation of RNA metabolic processing, regulation of 
biologic quality, chemical homeostasis, and posi-
tive regulation of macromolecule metabolic pro-
cessing (0.008≤ p <0.002; 0.043≤ FDR ≤0.018). The 
fourth mechanism was that rs2943549, rs2272669, 
rs1805100→HNF4G→hsa04950, affect the regula-
tion of transcription from RNA polymerase II pro-
moter, regulation of DNA-dependent, sequence-spe-
cific, and DNA-binding-specific transcription, and 
regulation of RNA metabolic processing (0.002≤ p 
<0.001; 0.022≤ FDR ≤0.018). The fifth mechanism 
was that rs6895902→MAML1 modify the regula-
tion of transcription from RNA polymerase II pro-
moter, regulation of DNA-dependent transcription, 
regulation of RNA metabolic processing, and pos-

itive regulation of macromolecule metabolic pro-
cessing (0.008≤ p <0.001; 0.043≤ FDR ≤0.018). The 
sixth mechanism was rs7178777, s7178777→NU-
SAP1→DNA packaging (p=0.007; FDR=0.019). The 
seventh mechanism was rs112394306→OR13A1  
hsa04740 (p=0.001;FDR=0.019). The eighth mecha-
nism was rs2215530→OR1L4→hsa04740 (p=0.001;F-
DR=0.019). The ninth mechanism was rs10985760 
→OR1L6→hsa04740 (p=0.001; FDR=0.019). The tenth 
mechanism was→rs773902 F2RL3 to modify throm-
bin receptor activity, regulation of body fluid 
levels, hemostasis, blood coagulation, response 
to wounding, coagulation, response to external 
stimulus, regulation of biologic quality, G pro-
tein signaling coupled to IP3 second messenger, 
phospholipase C activation, hsa04080, second mes-
senger-mediated signaling, and receptor activity 
(0.008≤ p <0.001; 0.043≤ FDR ≤0.022); and the 
eleventh mechanism was rs1805082, rs1805081 
→NPC1 to modify regulation of biologic quality, 
lysosomal transport, and chemical homeostasis 
(0.009≤ p <0.001; 0.035≤ FDR ≤0.029).  

We next investigated which genes play a role 
in the identified pathways using a pathwaybased 

20 hsa04912 GnRH-signaling pathway  0.001 0.029 

21 
G protein signaling coupled to 
IP3 second messenger phospholi-
pase C activation  

GO:0007200. The series of molecular signals gene-
rated because of the binding of a G-protein-coupled 
receptor to its physiological ligand, followed by the 
activation of phospholipase C and the subsequent 
release of inositol trisphosphate. 

0.003 0.030 

22 hsa04080 Neuroactive ligand–receptor interaction  0.002 0.030 

23 hsa04540 Gap junction  0.001 0.030 

24 Lysosomal transport GO:0007041. The directed movement of substances 
into, out of, or within a lysosome. 0.009 0.033 

25 Chemical homeostasis GO:0048878. The biological processes involved in the 
maintenance of an internal equilibrium of a chemical. 0.003 0.035 

26 hsa04020 Calcium-signaling pathway  0.001 0.038 

27 Second messenger-mediated 
signaling 

GO:0019932. A series of molecular signals in which 
an ion or small molecule is formed or released into 
the cytosol, thereby helping relay the signal within 
the cell. 

0.004 0.038 

28 Positive regulation of macromol-
ecule metabolic process 

GO:0010604. Any process that increases the frequen-
cy, rate, or extent of chemical reactions and pathways 
involving macromolecules, any molecule of high 
relative molecular mass, the structure of which 
essentially comprises the multiple repetition of units 
derived, actually or conceptually, from molecules of 
low relative molecular mass. 

0.008 0.043 

29 Receptor activity  
GO:0004872. Combining with an extracellular or 
intracellular messenger to initiate a change in cell 
activity. 

0.006 0.046 

30 hsa00230 Purine metabolism  0.010 0.046 

FDR: false discovery rate
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Figure 1. Regional linkage disequilibrium plots of rs2230739 (ADCY9) (A), rs16859886 (ADCY10) (B), 
rs1169288 (HNF1A) (C), and rs2943549 (HNF4G) (D) single-nucleotide polymorphisms (SNPs). SNPs are plotted 
along with their proxies (based on 1000 genomes pilot 1 CEU) as a function of genomic location, and annotated 
by the recombination rate across the locus (light blue line). On the y-axis, pairwise r2 values are provided for 
each proxy SNP by using color codes.

C
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approach, and found a distinct clustering of genes 
involved in the candidate pancreatic cancer-causal 
pathways. The most significant pathway was the 
cyclase activity, specifically involving ADCY10, 
GUCY1A2, ADCY8, ADCY9, GUCY1A3, GUCY2D, 
GUCY2C, GUCY1B3, ADCY7, and RTCD1 (p<0.05). 
The second most significant pathway was the 
phosphorus oxygen lyase activity, which involved 
ADCY10, GUCY1A2, ADCY8, ADCY9, GUCY1A3, 
GUCY2D, GUCY2C, GUCY1B3, and ADCY7 (p<0.05). 

 

Discussion 

Multiple related genes in a pathway likely 
work together to confer disease susceptibility, and 
some of these genes may not reach genome-wide 
significance in any single GWAS. Therefore, PBA 
is required to identify new loci associated with 
susceptibility to complex diseases [16,17]. A com-
plex molecular network and various cellular path-
ways may play key roles in the development of 
pancreatic cancer. If a specific pathway was rele-
vant to disease susceptibility, association signals 
would be expected to be overrepresented for SNPs 
in that pathway [18]. Given the limited power 
of GWAS to detect single SNP associations, we 
adopted a pathwaybased approach to take into ac-
count the biological interplay between genes, and 
provide insights into how multiple genes might 
contribute to the pathogenesis of pancreatic can-
cer [19]. 

In the present pathway analysis, we used 
ICSNPathway analysis to identify 18 candidate 
SNPs, 11 genes, and 30 pathways, which provided 
11 hypothetical biological mechanisms. 

Our analysis identified 11 candidate genes 
(ADCY9, ADCY10, HNF1A, HNF4G, MAML1, NU-
SAP1, OR13A1, OR1L4, OR1L6, F2RL3, and NPC1) 
that could contribute to pancreatic cancer risk. The 
most significant SNP-to-gene-to-effect hypothesis 
was that rs2230739 alters the role of ADCY9 in 
various pathways and processes, including cy-
clase activity, phosphorus oxygen lyase activity, 
hsa04912, hsa04540, hsa04020, and hsa00230. 
ADCY9 may play a fundamental role in situations 
where the fine interplay between intracellular cal-
cium and cAMP determines the cellular function, 
and may be a physiologically relevant docking 
site for calcineurin [20]. Elevations in intracellu-
lar cAMP trigger bicarbonate and fluid secretion 
from pancreatic duct cells, and known stimulants 
of pancreatic ductal secretion (VIP and βadren-
ergic agonists) stimulated and increased the ex-
pression of adenylate cyclase activity in human 
pancreatic adenocarcinoma cell lines [21]. Abnor-

mality in ductal function may lead to pancreatic 
pathology, and about 90% of pancreatic cancer 
is of ductal origin [22]. However, the association 
between ADCY9 and pancreatic cancer remains 
unclear. The second strongest mechanism was 
that rs16859886 modulates ADCY10 to affect its 
role in various pathways and processes, including 
cyclase activity and phosphorus oxygen lyase ac-
tivity. The third mechanism was that rs1169288, 
rs2464195, and rs2464196 modulate HNF1A to 
regulate DNA-dependent, sequence-specific, and 
DNA-binding-specific transcription, regulation of 
RNA metabolic processing, regulation of biologic 
quality, chemical homeostasis, and positive reg-
ulation of macromolecule metabolic processing. 
HNF1A is a transcriptional activator that reg-
ulates the tissue specific expression of multiple 
genes, especially in pancreatic islet cells and liv-
er [23]. HNF1A is one of the critical regulatory 
transcription factors in the developing and ma-
ture pancreas ]23]. The fourth mechanism was 
that rs2943549, rs2272669, rs1805100→HNF4G 
→hsa04950 affect the regulation of transcrip-
tion from RNA polymerase II promoter, regula-
tion of DNA-dependent, sequence-specific, and 
DNA-binding-specific transcription, and regu-
lation of RNA metabolic processing. HNF4G is 
a transcription factor with a lower transcription 
activation potential than HNF4-alpha [24,25]. 
GWASs have revealed that HNF1A and HNF4G 
play key roles as susceptibility genes in the de-
velopment of pancreatic cancer [25,26]. The fifth 
mechanism was rs6895902→MAML1 that affects 
the regulation of transcription from RNA poly-
merase II promoter, regulation of DNA-depend-
ent transcription, regulation of RNA metabolic 
processing, and positive regulation of macromol-
ecule metabolic processing. MAML1 acts as a 
transcriptional coactivator for NOTCH proteins, 
and enhances phosphorylation and proteolytic 
turnover of the NOTCH intracellular domain in 
the nucleus through interaction with CDK8 [27]. 
MAML1 plays a role in hematopoietic develop-
ment by regulating NOTCH-mediated lymphoid 
cell fate decisions [27]. Disrupting a NOTCH sig-
naling pathway may contribute to mucoepider-
moid carcinoma, including pancreatic cancer [28]. 

Genes without a known immunological func-
tion are of particular interest because they could 
lead to the identification of novel mechanisms 
for susceptibility to pancreatic cancer. The pres-
ent analysis suggests that the pathway and genes 
identified by PBA may contribute to susceptibility 
to pancreatic cancer.
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Although these hypothetical mechanisms 
might contribute to pancreatic cancer suscep-
tibility, the PBA test may also be susceptible to 
false-positive results, like singlemarker-based 
association tests. Therefore, these results 
should be viewed as preliminary and be used to 
generate new hypotheses, which should then be 
appropriately verified in independent studies. 
Thus, additional studies are needed to confirm 
the association between the candidate SNPs, 
genes, and pathways and pancreatic cancer. 
Nevertheless, pathway-based approaches play 
a complementary role in the identification of 
genes that confer disease susceptibility. There-
fore, the results obtained in the present study 

may lead to the formulation of novel hypothe-
ses for future investigation. 

In summary, we examined a pancreatic can-
cer GWAS dataset to identify genetic associa-
tions with pancreatic cancer at both the SNP 
and pathway levels. By applying ICSNPathway 
analysis to the pancreatic cancer GWAS dataset, 
we identified 18 candidate SNPs and 11 genes 
(including ADCY9, ADCY10, HNF1A, HNF4G, 
and MAML1), 30 pathways, and 11 biological 
mechanisms that might contribute to pancreat-
ic cancer susceptibility. However, further stud-
ies are needed to confirm and explore the ge-
netic variations of the molecular pathways that 
might be associated with pancreatic cancer. 
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