
Lung cancer exhibits an increasing incidence and a high 
mortality rate worldwide. Non-small cell lung carcinoma 
(NSCLC) constitutes the majority of patients with lung 
cancer (about 85% of all pathologically defined lung cancer 
cases). A broad spectrum of genomic imbalances, including 
chromosome polysomy/aneuploidy or specific gene dereg-
ulation mechanisms, such as point mutations, deletions 
and amplifications has been already identified in the corre-
sponding patients, modifying their response rates to novel 
targeted therapeutic regimens, and affecting also their life 
span. Among all chromosomes, chromosome 7 seems to play 
a critical role in NSCLC development and progression. Ab-
errations in significant genes located on it, such as EGFR, 

cMET, BRAF combined with numerical abnormalities of 
the whole chromosome are cytogenetic events that lead 
to specific molecular signatures in patients with NSCLC. 
Detection of these chromosome/gene imbalances based on 
polymerase chain reaction (PCR) and in situ hybridization 
provides to oncologists the right genetic substrate for han-
dling these patients in a rational therapeutic way regard-
ing their isolated molecular profile. In the current paper, 
we present the structural and functional profile of chromo-
some 7 focused on its alterations in NSCLC. 
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Cancer is a complicated disease involving a 
variety of gross chromosomal and specific gene 
alterations in its genesis, progression and met-
astatic expansion [1]. Concerning solid tumors, 
a variety of gene functional and numerical im-
balances in crucial molecular pathways such as 
cell cycle regulation, signaling transduction, ap-
optosis or angiogenesis have been identified and 
explained [2]. Malignant cell transformation is 
mediated by an aberrant gene expression, includ-
ing predominantly oncogenes’ upregulation com-
bined with suppressor genes’ downregulation that 

lead to cell cycle deregulation [3]. In fact, cancer 
genome consists of all genetic alterations that 
modify the normal DNA/mRNA sequences, trig-
gering thus a cataract of molecular reactions in-
side and outside the nucleus microenvironment 
[4]. Point mutations, polymorphisms, abnormal 
gene copy number (amplification, deletion), or 
structural chromosomal rearrangements (translo-
cations) and epigenetic modifications detectable 
by different molecular techniques provide criti-
cal information to oncologists for handling these 
patients in a rational therapeutic way regarding 
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their isolated molecular landscape [5]. 
Gross chromosome aberrations include ab-

normal numerical alterations such as polysomy 
– also aneuploidy – and monosomy detectable 
by karyotyping techniques and fluoresence in 
situ hybridization (FISH) analyses. Furthermore, 
structural changes and rearrangements (i.e. trans-
locations) in specific or vast chromosome regions 
are identified by applying predominantly PCR and 
FISH, especially comparative genomic hybridiza-
tion (CGH) [6,7]. In the current paper, we focused 
on chromosome 7 structural and functional ab-
normal aspects in NSCLC.

Introducing the chromosome 7: struc-
ture and genes

Based on a combination of FISH & PCR se-
quencing DNA and mRNA analyses, several study 
groups determined the DNA sequence of human 
chromosome 7, which was the first fully analyz-
ed metacentric chromosome, representing ap-
proximately the 5.5% of the total DNA content in 
cells [8,9]. Inside its 99.4% of the well analyzed 
euchromatic sequence – comprising over 153 mil-
lion base pairs – a number of 1,150 protein-coding 
genes and additionally 941 pseudogenes (DNA se-
quences similar to genes but without a functional 
role in producing proteins) has been already iden-
tified. Interestingly, human chromosome 7 was 
found to be genomically equal at 92% compared to 
the mouse analog [10]. Highly DNA conserved se-
quences in the two species were detected in many 
and critical for protein coding segments (26-46 at 
resolution of 330 to 100 kb, respectively). Inside 
its complete DNA sequence length, gene and exon 
coverages demonstrate 36.5 and 1.4% percentag-
es, respectively, with a total gene density of 7.5% 
(per Mb). Chromosome 7 contains also many crit-
ical t-RNA genes (n=23) and human micro RNAs 
(mRNAs) [11].

Significant genes that lead to specific he-
reditary disorders are harbored on the long arm 
(7q) including cystic fibrosis, Williams-Beuren 
syndrome, Marfan & Ehlers-Danlos syndrome, 
glaucoma-related pigment dispersion syndrome, 
hereditary pancreatitis, Pendred syndrome, Zell-
weger syndrome, familial hypertrophic cardio-
myopathy [12]. Similarly, Turcot syndrome, Char-
cot-Marie-Tooth neuropathy, macular dystrophy, 
Pallister-Hall syndrome, autosomal dominant 
mediated deafness, Shaethre-Chotzen syndrome, 
Stiff-Man syndrome and also familiar hyperinsu-
linism are important genes located on its short 
arm (7p) [13]. Besides these genes that are impli-

cated in genetic inheriting and familial diseases, 
others are considered as carcinogenetic in sol-
id and non-solid malignancies. Genes involved 
in the genesis of Ewing’s sarcoma, hereditary 
non-polyposis colon cancer, T-cell tumor, glio-
blastoma, myeloid leukemia, Wilm’s tumor are 
located on 7p arm, whereas papillary renal cell 
carcinoma (sporadic/familial), basal cell carci-
noma, hepatocellular carcinoma (childhood va-
riety) are referred to genes identified on 7q arm 
[14]. Furthermore, critical genes for signal trans-
duction to the nucleus regulation are located on 
chromosome 7. Among them, epidermal growth 
factor receptor (EGFR-gene locus: 7p12, exons: 
30), MET proto-oncogene, tyrosine kinase recep-
tor (cMET-gene locus: 7q31, exons: 24), and also 
V-raf murine sarcoma viral oncogene homolog 
B1B-Raf proto-oncogene, serine/threonine kinase 
(BRAF- gene locus: 7q34, exons: 22) are frequently 
deregulated in solid malignancies including lung, 
colon, head & neck carcinomas [15-18]. Especially 
in NSCLC, these genes are correlated with estab-
lished criteria for applying targeted therapeutic 
strategies in subgroups of patients characterized 
predominantly by specific mutations or amplifica-
tion [19,20]. Ideogram of chromosome 7 and the 
corresponding genes are presented in Figure 1.

EGFR & chromosome 7 aberrations in 
NSCLC 

EGFR protein acts as a transmembrane gly-
coprotein. It consists of a large extracellular li-
gand-binding region, a single hydrophobic trans-
membrane bridge adjusting to an intracellular 
juxtamembrane (JM) region, a tyrosine kinase 

Figure 1. Ideogram of chromosome 7 focused on EG-
FR/c-MET/BRAF genes. Mechanisms of chromosome 
and gene deregulation in NSCLC are also presented. 
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domain and finally a C terminal tail with multi-
ple tyrosine residues acting as a regulatory region 
[21]. Three main EGFR depended pathways have 
been already identified including the PI3K-AKT-
PTEN-mTOR, the RAS-(B) RAF-MEK-ERK/MAPK 
and also the IL6-JAK1/2-STAT3 [22]. Concerning 
NSCLC, a subset of patients exhibits a specific ge-
netic profile regarding EGFR activating mutations 
(approximately 10-30%). EGFR mutations (mis-
sense substitutions, in-frame insertions, in-frame 
deletions) modify the response rates (affordable 
response or activated resistance) to tyrosine ki-
nase inhibitors (TKIs), such as erlotinib, gefitinib, 
afatinib, dacomitinib, vandetanib) and affect the 
survival of the corresponding patients [23]. Inter-
estingly, T790M (exon 20) and L858R (exon 21) 
represent activating and also germline mutations, 
whereas V843I (exon 21) is a pure germline mu-
tation [24]. Concerning EGFR numerical altera-
tions detected by FISH in NSCLC, high gene copy 
numbers are found in almost 60% of the patients. 
Additionally, gene amplification leads to EGFR 
protein overexpression in the corresponding 
specimens (40-80%) detected by IHC. Although 
anti-EGFR monoclonal antibodies (mAbs, such as 
cetuximab, panitumumab) inhibition strategies 
in NSCLC patients are under consideration, gene 
amplification mechanism is the critical molecular 
event as it happens in HER2 gene amplified de-
pendent breast cancers cases [25,26]. 

Chromosome 7 polysomy in EGFR amplified 
or non-amplified cases seems to play a crucial 
role in regulating EGFR protein expression lev-
els. A balanced increase of EGFR gene and chro-
mosome 7 copy numbers is related with specific 
EGFR mutations predicting also high probability 
of response to gefinitib [27]. Similarly, another 
study group explored the erlotinib efficacy in NS-
CLC patients with high polysomy of chromosome 
7 and EGFR/KRas wild-type tumors. The authors 
concluded that high polysomy of chromosome 7 
was the only molecular feature conferring clear 
signs of sensitivity to erlotinib [28]. Concerning 
the influence of chromosome 7 numerical imbal-
ances in patients’ survival rates, another recent-
ly published study showed that EGFR gene am-
plification combined with polysomy was found 
to be negatively correlated with poor differenti-
ation and smoking history, combined with c-Kit 
and EGFR aberrant expression [29]. In contrast to 
chromosome 7 polysomy cases, the role of mono-
somy (loss of one chromosome inside the pair) in 
NSCLC is undetermined. A study group showed 
the experimentally loss of an EGFR-amplified 

chromosome 7 as a novel mechanism of acquired 
resistance to EGFR-TKIs in EGFR-mutated NSCLC 
cells, especially in low concentration of erlotinib 
[30].

c-MET & chromosome 7 aberrations in 
NSCLC 

cMET proto-oncogene encodes hepatocyte 
growth factor tyrosine kinase receptor, which rec-
ognizes hepatocyte growth factor (HGF) as a ligand 
binding molecule. cMET regulates MEK/ERK, MEK/
JNK and PI3K-Akt-antagonizing EGFR extracellu-
lar receptor activity- and indirectly MDM2 (mouse 
double minute 2) gene which controls p53 degra-
dation [31]. cMET is involved also in IL6-JAK1/2-
STAT3 by STAT3 phosporylation, which translo-
cates to the nucleus acting as a transcription factor 
for several genes [32]. HGF/cMET protein overex-
pression due to gene amplification combined or 
not with chromosome 7 polysomy in NSCLC pa-
tients – mainly with adenocarcinoma harboring 
EGFR mutations (ie T790M) – acts as a mechanism 
of resistance in TKI application [33]. Anti-cMET 
targeted therapeutic strategies in these patients 
are under consideration. A study showed that by 
inhibiting cMET expression through shRNA the 
sensitivity to EGFR-TKIs was restored [34]. In 
contrast to these findings, there is a skepticism re-
garding strategies based on simultaneous EGFR/
cMET (dual) inhibition, although the synergistic 
effect of specific inhibitors has been detected in 
in vitro experimental models [35]. Additionally to 
these molecular events, 7q31 region analysis by 
FISH should be used also as a reliable marker for 
chromosome 7 numerical imbalances determina-
tion. A study group investigated the usefulness of 
7q31 region evaluation to discriminate EGFR ampli-
fication from chromosome 7 polysomy in controver-
sial EGFR FISH positive cases. The authors conclud-
ed that simultaneous 7p12 & 7q31 FISH analysis 
provide a secure result regarding the identification 
of pure EGFR amplification combined with or not 
chromosome 7 polysomy/aneuploidy [36]. 

BRAF & chromosome 7 aberrations in 
NSCLC 

The BRAF protein - encoded by the corre-
sponding gene - belongs to the raf/mil family of 
serine/threonine protein kinases regulating the 
MAP kinase/ERKs signaling pathway [37]. Point 
mutations inside this gene’s exons have been de-
tected in NSCLC patients. The mutational rate is 
estimated between 1 to 4% in lung adenocarci-
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noma cases [38]. BRAF V600E is a driving muta-
tion that can be effectively targeted using selective 
BRAF and/or MEK inhibitors. There is also a signif-
icant number of other point mutations in different 
exons of the gene with an undetermined role in NS-
CLC response or resistance in TKIs (dabrafenib, ve-
murafenib) [39,40]. Based on FISH analyses, a study 
group detected BRAF gene amplification (predomi-
nantly low) in sporadic cases of NSCLC patients. In-
terestingly, BRAF V600E status was correlated with 
a BRAF increased copy number. Chromosome 7 pol-
ysomy was also identified focally. They suggested 
that the combination of BRAF copy number gain 
and V600E mutation may serve as a marker of the 
more aggressive biological behavior in lung adeno-
carcinoma due to increased N stage in TNM taxon-
omy (lymph node positive cases) [41].

Conclusions

NSCLC represents the vast majority of lung 

carcinomas exhibiting a broad spectrum of chro-
mosome and specific gene rearrangements [42]. In-
tra-tumoral genomic heterogeneity modifies the re-
sponse rates of the patients to targeted therapeutic 
strategies (TKIs or mAbs). Chromosome 7 deregula-
tion due to aneuploidy/polysomy/monosomy or sin-
gle/complex gene abnormalities (mutation/ampli-
fication) plays a crucial role in these malignancies 
increasing their aggressive biological behavior. A 
recently published study showed that glucococti-
coid receptor regulates mitotic progression and 
its reduced expression is detected in a panel of 
human liver, lung, prostate, colon and breast can-
cers [43]. Similar molecular analyses will improve 
our molecular knowledge in understanding mech-
anisms that induce chromosomal instability.
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