
Purpose: The studies of transcriptome and genome in-
volved in breast cancer are effectively promote the under-
standing of biological processes and the development of 
novel targeted therapies. Here we performed an integrated 
analysis of gene expression and genetic variation to dis-
close the molecular pathogenesis in breast cancer. 

Methods: Gene expression profiles were applied to identify 
differential expression levels of genes between breast cancer 
and normal subjects. DNA sequencing data were extracted 
to analyze gene mutational information including number 
of mutations, number of mutated genes and their chromo-
somal distributions. Correlation analysis of gene mutations 
and differential expression was performed. Network-based 
approach was applied to compare the topological proper-
ties between the differentially expressed (DE) genes prone to 
mutation and those that were not. Two-tailed p<0.05 was 
considered as statistically significant. 

Results: Statistical analysis showed that DE genes pre-
sented significantly positive correlation with the number 
of mutations (p=1.267E-05), mutated genes (p=0.00001) 
and total genes in the genome (p=2.489E-06). There were 81 
genes, both DE and mutant, and they were distributed on 
chromosome 4 (N=51), chromosome 15 (N=29), and chro-
mosome 18 (N=1). These 81 genes showed an increase in 
the number of genes interacting with in the protein-protein 
network. 

Conclusion: Analysis of the integration of transcriptome 
and genome in breast cancer disclosed distinctive topolo-
gy between the DE genes prone to mutation and those that 
were not. 
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Breast cancer is the most common malignan-
cy among women and the second leading cause of 
death after lung cancer [1]. It was estimated that 
nearly 234,190 new cases would be diagnosed and 
40,730 would die from breast cancer in the United 
States alone in 2015 [1]. At present, high-through-
put technology has resulted in a paradigm shift in 
the way that researchers view breast cancer biol-
ogy. As a powerful approach for expression pro-

filing, it has been considered as a reliable tool for 
disclosing the molecular pathogenesis of breast 
cancer [2,3]. Expression profiling of breast cancer 
has classified this disease into various subtypes 
based on their gene expression pattern. For exam-
ple, a recent report demonstrated that breast can-
cer with different estrogen receptor status could 
be effectively differentiated using 58 DE genes 
[4]. Microarray technology, based on its prognos-
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tic and predictive power, has been shown to be 
complementary to traditional clinicopathologic 
features [5]. 

Generally, the occurrence of cancer is suspect-
ed from the accumulation of inherited and somat-
ic mutations in oncogenes and tumor suppressor 
genes. Several lines of evidence have shown that 
genetic events play an important role in breast 
cancer [6-9]. Approximately 10-15% of breast 
cancers are likely due to an inherited mutation, 
with about one third of these cases attributable 
to breast cancer susceptibility genes 1 (BRCA1) 
and breast cancer susceptibility gene 2 (BRCA2) 
[10,11]. Harmful mutations in either of these two 
cancer-susceptibility genes conferred a woman’s 
lifetime likelihood of developing breast cancer 
between 60 and 85% [6,12]. Germline mutations 
in the TP53 tumor suppressor gene could cause 
the Li–Fraumeni syndrome associated breast can-
cer with a lifetime breast cancer risk of 49% by 
the age of 60 [13,14]. Meijers-Heijboer et al. [9] 
demonstrated that mutations in the cell cycle 
checkpoint kinase 2 (CHEK2) gene could result in 
a twofold increase of breast cancer risk in wom-
en and a tenfold increase of risk in men. More-
over, other cases of breast cancer are suspected 
to be attributable to additional cancer suscepti-
bility genes with different penetrance, hormonal 
and environmental factors, and stochastic genetic 
events [6].

DNA sequencing (DNASeq) technology, also 
known as high-throughput next-generation se-
quencing technology for DNA, is rapidly devel-
oping in recent years. Compared to microarray 
analysis and previous sequencing technologies, 
DNASeq allows to sequence genome-wide genet-
ic data more quickly and cheaply with less signal 
noises [15]. DNASeq technology has been applied 
for unprecedented discoveries in various types of 
cancer, and as such has revolutionized the study 
of genomics and molecular biology. To date, this 
high-throughput sequencing technology has al-
lowed in-depth study of genomic changes in over 
1000 breast cancers [16]. The Cancer Genome 
Atlas (TCGA) database (http://cancergenome.nih.
gov/), a joint effort of the National Cancer Insti-
tute (NCI) and the National Human Genome Re-
search Institute (NHGRI), is an integrative and 
coordinated effort to improve the understanding 
of the molecular basis of cancer through the ap-
plication of large-scale genome sequencing tech-
nologies, including somatic mutations, germline 
susceptibility variants, and single nucleotide pol-
ymorphism (SNP) [17,18].

A malignant tumor is a highly heterogene-
ous disease whose intrinsic characteristics are 
apparent not only by gene expression, but by mu-
tational and DNA copy number profiles as well. 
Recently, bioinformatics and computational biol-
ogy provide new insights to explore the molecu-
lar pathogenesis and therapy of cancer. Previous 
studies have offered an amount of preliminary 
data of gene expression profiles in ArrayExpress 
Archive and DNASeq data in TCGA involved in 
breast cancer [3,19,20], which have provided some 
useful insights to derive the prognostic and pre-
dictive signatures. However, few studies are cur-
rently considered for integrated analysis of these 
data to offer potential for identifying the under-
lying biology by comparing gene differential ex-
pressions and genetic variations. 

Network-based approach, as a powerful and 
informative tool, provides an effective way to ana-
lyze biological and communicated systems [21], 
and reveals interesting topological properties of 
interactomes with respect to gene essentiality. 
The topology of networks not only sheds light 
on the molecular mechanisms in cancer, but also 
provides insight into evolutionary aspects of the 
genes involved [22]. A recent study indicated that 
cancer genes, whose mutations lead to cancer, 
showed an evolutionary difference from genes 
not mutated in cancer and played central roles 
in interactomes [23]. Herein, we integrated gene 
expression profiles with the network-based ap-
proach to examine the connectivity of genes sus-
ceptible to mutations through interconnecting to 
a number of DE genes involved in breast cancer.

Thus, in the present study we attempted to 
examine the association of genomic alterations 
with transcription profiles involved in breast can-
cer, and to study the distinction between DE genes 
with mutations and DE genes without mutations 
based on the network analysis.

Methods

Data collection and identification of DE genes

In this work, 5 microarray expression profiles of 
breast cancer and normal controls were extracted from 
ArrayExpress database [24] (http://www.ebi.ac.uk/array-
express/) under access number of E-GEOD-29431 [25], 
E-GEOD-3744 [26], E-GEOD-42568 [27], E-GEOD-50567 
[28] and E-GEOD-7904 [26]. In these 5 datasets, a total 
of 337 samples, including 276 cases and 61 controls, 
were collected. The characteristics of studies are shown 
in Table 1. Prior to analysis, the original expression 
information from all conditions was carried on data 
preprocessing. For each gene expression dataset, we 
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preformed quality control, background correction, nor-
malization, probe set filtering, and perfect match and 
mismatch correction using robust multichip average 
(RMA) [29] and Micro Array Suite 5.0 (MAS 5.0) [30] 
algorithm in Bioconductor. Each probe was mapped 
to one gene, and the probe was discarded if it couldn’t 
match any genes. The value averaged over probes was 
selected if the gene had multiple probes. 

Breitling et al. [31] and Hong et al. [32] provided 
a powerful, rank-based meta-analysis tool to detect DE 
genes by integrating multiple microarray data. In each 
dataset, the genes were compared and ranked using the 
fold change (FC) method. Then the ranks were aggre-
gated to an overall score for across studies, obtaining 
a ranked gene list. In a given study, pairwise FC (pFC) 
was computed, and the corresponding pFC ratios were 
ranked. This rank product statistic is defined as

Where k (k=1,…,K) represents a microarray study, i 
( i=1,..., I) represents a gene in an individual study, r 
(r=1,…,R) represents the rank value of gene, pFCirk is 
the pFC value of gene i in study k under pairwise com-
parison r.

In present study, we provided this rank-based 
method to identify the DE genes between breast can-
cer and normal controls combining these multiple ex-
periments. The up- and down-regulated DE genes were 
identified by assimilating a set of gene-specific rank 
tests. Genes with a percentage of false-positives (pfp) 
< 0.01 and |log2FC| > 2 were considered as DE genes 
between breast cancer cases and normal controls.

Chromosomal distribution of DE genes

To examine the chromosomal distribution of the 
breast cancer-derived transcripts, we assigned the DE 
genes to chromosomes on the basis of Functional Anno-
tation Chart module in the Database for Annotation, Vis-
ualization and Integrated Discovery (DAVID, http://david.
abcc.ncifcrf.gov/tools.jsp). The significant enrichments 
were identified by expression analysis systematic explor-
er (EASE) score with the correction of false discovery rate 
(FDR). The threshold of EASE score was less than 0.01. 

Analysis of DNASeq data

TCGA is a cancer genomic project to catalogue ge-
netic mutations responsible for cancer, using genome 
sequencing and bioinformatics, in which multiple ex-
perimental data of more than 20 different types of hu-
man cancers are characterized, including DNA changes 
of breast cancer. To study the whole gene variations 
associated with breast cancer, we analyzed DNASeq 
data of breast cancer extracted from TCGA. In TCGA, 
whole-exome capture libraries were constructed and 
sequenced on Illumina HiSeq flowcells, and whole-ge-
nome sequencing was done with the Illumina HiSeq 
sequencer. Reads were aligned to the reference human 
genome build hg19 using an implementation of the 
Burrows-Wheeler Aligner, and a BAM file was pro-
duced for each tumor and normal sample using the 
Picard pipeline [33]. The Firehose pipeline was used 
to manage input and output files and submit analyses 
for execution [33]. Level 2 data were applied to detect 
gene mutations, including single-nucleotide polymor-
phism (SNP), base deletion and base insertion. Somatic 
mutations obtained by WUSM mutation calling model 
were selected for our study. A total of 17 valid batches 
including 1577 samples (776 tumors and 801 normal 
subjects) were extracted. Then the genetic variant in-
formation was obtained for further analysis.  

Correlation analysis of DE genes and genetic variations

Analyzing the DNASeq data obtained from TCGA, 
the number of mutations (mut), the number of muta-
tional genes (Gmut), the number of mutations in each 
mutational gene (mut/Gmut), the percent of Gmut in 
total gene (PGmut), and chromosomal distributions of 
genetic mutations were extracted for correlation anal-
ysis with DE genes. Also, the total number of genes 
(Gtotal) in each chromosome was obtained [34]. We im-
plemented Spearman’s correlation test [35] to evaluate 
the correlation of the DE genes and genetic mutational 
information with p value<0.01 considered as signifi-
cant correlation.

Comparison analysis between DE genes with mutation and 
DE genes without mutation based on interaction network

Table 1. Characteristics of the individual studies included in the study

Accession number Year
Sample size

Total (Cases/Controls)
Platform

E-GEOD-29431 2011 66 (54/12) Affymetrix HG-U133Plus2

E-GEOD-3744 2006 47 (40/7) Affymetrix HG-U133Plus2

E-GEOD-42568 2013 121 (104/17) Affymetrix HG-U133Plus2

E-GEOD-50567 2011 41 (35/6) Affymetrix HG-U133Plus2

E-GEOD-7904 2006 62 (43/19) Affymetrix HG-U133Plus2
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In order to examine the connectivity of DE genes 
with mutation, the gene-gene interaction network was 
constructed using search tool for the retrieval of in-
teracting genes/proteins (STRING, http://string.embl.
de/) database [36,37]. All the nodes with degree ≥1 
were reserved in the network. All DE genes involved 
in the network were divided into two groups: DE genes 
with mutation and DE genes without mutation. The 
two-sample t-test [38] was conducted to compare the 
results between the two groups based on the degree of 
genes in the network. The statistical significance level 
was set at p<0.05. Two-sample t-test revealed statisti-

cally significant difference in the network degree level 
between two groups.

Results

Identification and chromosomal distributions of DE 
genes

Across 5 datasets associated with breast can-
cer, a total of 1464 DE genes were identified under 
the criterion of pfp < 0.01 and |log2FC| > 2. Among 

Table 2. Chromosomal distributions of differentially expressed genes in expression profiling

Chromosome Count % p value

1 147 10.7 0.0540

2 90 6.6 0.514

3 106 7.7 1.76E-05*

4 77 5.6 0.00261

5 79 5.8 0.0105

6 65 4.7 0.998

7 60 4.4 0.978

8 78 5.7 2.95E-04*

9 57 4.2 0.575

10 74 5.4 0.00229

11 92 6.7 0.0514

12 84 6.1 0.0104

13 36 2.6 0.0667

14 28 2.0 0.999

15 41 3.0 0.758

16 31 2.3 0.999

17 63 4.6 0.825

18 24 1.7 0.467

19 49 3.6 0.999

20 31 2.3 0.737

21 16 1.2 0.732

22 18 1.3 0.999

X 48 3.4 0.992

* p < 0.01
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these DE genes, 1038 were up-regulated and 426 
were down-regulated.

On the basis of Functional Annotation Chart 
module in DAVID, a total of 1398 DE genes were 
assigned to each chromosomes (Table 2), except 
for the other 66 DE genes which were unknown 
genes. From Table 2, we discovered that these DE 
genes were significantly distributed on chromo-
some 3 (p=1.76E-05), chromosome 8 (p=2.95E-04), 
chromosome 10 (p=0.00229), and chromosome 4 
(p=0.00261). In terms of DE genes count, chromo-
some 1 harbored the most DE genes (10.7%), fol-
lowed by chromosome 11 (7.7%).

DNASeq data analysis

From TCGA database, 1577 samples including 
776 breast cancer cases and 801 normal controls 
were extracted across 17 valid batches. Twen-
ty-three chromosomes (22 autosomes and X-chro-

mosome) were analyzed. The genetic mutational 
information of each chromosome including mut, 
Gmut, mut/Gmut, and PGmut is shown in Figure 
1. On these chromosomes, a total of 46885 mut, 
15780 Gmut and 49865 Gtotal were depicted. 
There was an average of three mutations in each 
mutant gene. On average, mutant genes account-
ed for approximately 30% of the total genes.

Correlation analysis of DE genes and genetic varia-
tions

Correlation analysis of the DE genes and ge-
netic mutations were performed using Spearman’s 
correlation test. The results showed that the num-
ber of DE genes had significantly positive corre-
lation with mut (p=1.267E-05), Gmut (p=0.00001) 
and Gtotal (p=2.489E-06), but had no significant 
correlation with logFC (p=0.538), PGmut (p=0.043) 
and mut/Gmut (p=0.140) (Table 3). 

Table 3. The correlation of differentially expressed genes in expression profiling and genetic variations by 

Spearman’s correlation test

logFC mut Gmut Gtotal PGmut mut/Gmut

DE genes
Correlation 
coefficients 0.135 0.780 0.782 0.812 0.425 0.318

p value 0.538 1.276E-05 1.000E-05 2.489E-06 0.043 0.140

mut: the number of mutations, Gmut: the number of mutational genes, Gtotal: the total number of genes in chromosomes, PGmut: 
the percent of Gmut in total gene, mut/Gmut: the number of mutations in each mutational gene

Figure 1. Chromosomal distributions of genetic mutational information shows that gene mutations exist universal-
ly in all chromosomes. Mutant genes accounted for approximately 30% of the total genes. 
mut: the number of mutations, Gmut: the number of mutated genes, Gtotal: the total number of genes in chromo-
somes, PGmut: the percent of Gmut in total gene, mut/Gmut: the number of mutations in each mutated gene.



Transcriptome and genome involved in breast cancer66

JBUON 2016; 21(1): 66

Comparison study between the transcription 
profile and genetic information was performed, 
and found that 81 genes were both DE genes and 
mutant genes. Unexpectedly, when screening 
their chromosomal distributions, these DE genes 
with mutation distributed mainly on chromosome 
4 (51 DE genes), chromosome 15 (29 DE genes) 
and chromosome 18 (1 DE gene) in our study (Fig-
ure 2).

Interaction network analysis of DE genes with muta-
tion and DE genes without mutation

We constructed the gene-gene interaction 
network to distinguish DE genes prone to muta-
tions from those that are not. Comparison of con-
nectivity between DE genes with mutations and 
DE genes without mutations were performed us-
ing two-sample t-test to observe the between-net-
work differences. The number of interaction part-
ners for each gene in the network was calculated. 
DE genes without mutations were shown to have 
20.14 interaction partners, while DE genes prone 
to mutations had 27.17 interaction partners, on 
average. Statistics showed that the between-net-
work differences were statistically significant 
(p=0.472, t = -1.674, df = 1116).

Discussion

In recent years, remarkable efforts on cancer 
research have been directed towards the detection 
of genes associated with oncogenesis. Previous 
studies have provided sufficient evidence that part 
of breast cancers are due to inherited mutation, 
and the differential expression of genes also plays 
important roles in cancer development [4,5,9,39]. 
However, the precise molecular basis involved in 
breast cancer is still unclear. In the present study, 
we attempted to investigate the association be-
tween expression profiles and genetic variations 
on genome-wide in breast cancer. 

Recently, the identification of DE genes 
between tumor samples and controls has been 
popularized based on the expression profiling. 
A total of 1464 DE genes were yielded in this 
study. Enormous amount of DE genes between 
tumor patients and normal people have been 
presented in previous studies involving breast 
cancer [4,40]. Lee et al. [41] identified unique 
gene expression profiles of human ductal car-
cinoma in situ and invasive breast cancer. Gene 
expression profiling of breast cancer presented 
significantly better prognostication compared 
with currently used clinical parameters in pre-
dicting disease outcome [42, 43].  

Figure 2. Genes which were both differentially expressed genes in expression profiling and mutated genes, mainly 
distributed on chromosomes 4, 15 and 18.  
Gmut: the number of mutated genes. For other abbreviations, see text.
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Evidence from epidemiology suggested that 
genetic factors might play an essential role in 
the development of breast cancer [44,45]. Pre-
disposition to certain cancers have been linked 
to an ever-increasing number of mutations [46]. 
In this work, a total of 46885 mutations and 
15780 mutant genes were detected. Apparently, 
an average of three mutations could be observed 
in each mutant gene, and approximately 30% 
of total genes were mutant genes. There was a 
high average mutation rate in breast cancer. To 
date, multiple mutations in different genes have 
been associated with the development of breast 
cancer. Activating mutation in PALB2 was prov-
en as important cause of hereditary breast can-
cer [47]. Also in 9 new cancer genes including 
AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, 
MAP3K13, NCOR1, SMARCD1 and TBX3 driv-
er mutations were found among 100 tumors 
[48]. More recently, using large-scale genomic 
analysis, Lawrence et al. [49] identified 33 nov-
el mutated genes by analyzing nearly 5,000 pa-
tient samples across 21 cancer types. To date, 
genetic testing has become an important diag-
nostic tool for risk assessment of breast cancer 
patients and their families.

In the present work, Spearman’s correlation 
test showed that differential expressions had sig-
nificantly correlation with gene mutations. Re-
cently, previous studies also demonstrated corre-
lation between differential expression and genetic 
variations [46,50]. A strong correlation was found 
between somatic mutation frequency and gene 
expression level in cancers by whole-genome and 
whole-exome data analysis [51,52]. Hedenfalk et 
al. [53] also proved that heritable mutations influ-
enced the gene expression of cancer by analyzing 
expression profiles of breast cancers with BRCA1 
and BRCA2 mutations. A study about pseudohy-
poxic pheochromocytomas and paragangliomas 
associated with SDHB, SDHD, and VHL mutations 
showed that the gene expression profiles depend-
ed on tumor location as well as on the underlying 
mutation [46]. Consistent with a previous study 
[53], our findings also illustrated the correlation 
between expression profile and genetic variation 
in genome-wide scale. However, when screening 
the chromosomal distributions of DE genes and 
mutant genes, mutant DE genes were mainly dis-
tributed on chromosome 4 and chromosome 15. 
Changes in chromosome 4 have been identified in 
several types of human cancer, such as familial 
pancreatic cancer [54] and cervical cancer [55]. A 

study of Shivapurkar et al. [56] inferred that there 
were multiple tumor suppressor genes, the inacti-
vation of which was important in the pathogene-
sis of breast cancer, on both arms of chromosome 
4. Genetic variations at a susceptibility region on 
chromosome 15 have been linked to lung cancer 
risk in many previous studies [57,58]. Few stud-
ies showed changes in chromosome 15 linking 
to breast cancer. Changes in chromosome 4 and 
chromosome 15 might play important roles in the 
development of breast cancer, and more attention 
should be focused on them.

Our study also showed that the connectivity 
of DE genes prone to mutations involved in breast 
cancer was statistically significantly higher com-
pared with not prone genes.

It has been reported that a strong correlation 
exists between the age of a node and its degree 
for a growing network, as older nodes generally 
have more chances to receive links in network 
[59]. Our study showed the degree of DE genes 
prone to mutations involved in breast cancer was 
statistically significantly higher compared with 
not mutational genes, that is to say DE genes 
prone to mutations might be older genes showing 
higher connectivity in network, suggesting more 
important roles in the complex cellular processes. 
This finding has been the subject of several pub-
lications, showing that genes whose mutation led 
to cancer played central roles in the gene network 
[23,60].

In summary, we dealt with the comparison be-
tween expression profiles and genetic mutations 
involved in breast cancer and noticed that a num-
ber of DE genes and genetic mutations were dis-
played in breast cancer. There was a high mutation 
rate (approximately 30 %) in genes of breast cancer 
samples. Differential expression was significantly 
positively correlated with genetic variations. DE 
genes prone to mutation were mainly distributed on 
chromosome 4 and chromosome 15, which should 
draw close attention. These DE genes which were 
susceptible to mutation in breast cancer exhibited 
an increased frequency of interactions they partic-
ipate in, showing a differentiation in evolutionary 
aspects of these two groups. 
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