
Purpose: The aim of this study was to identify the al-
tered biological pathways associated with ulcerative coli-
tis (UC)-related colorectal carcinoma (CRC) by systematic 
tracking the dysregulated modules from re-weighted pro-
tein-protein interaction (PPI) networks based on the expres-
sion profiles from normal, UC and various stages of CRC.

Methods: We firstly recruited the UC- and CRC-related mi-
croarray data from ArrayExpress database, and obtained 8 
expression profiles  which contained 5 conditions (normal, 
UC, early stage CRC, stage II CRC and stage III CRC). Then, 
the PPI networks of normal and different disease stages 
were constructed and re-weighted using Pearson correla-
tion coefficient (PCC). Next, the condition-specific modules 
were extracted from 5 PPI networks via clique-merging al-
gorithm, and altered modules were captured on the basis of 
module correlation density (MCD). Subsequently, the gene 
compositions of altered modules and gene differential ex-
pressions in different disease stages were identified to screen 
the dysregulated genes. Finally, pathways enrichment anal-
yses for the genes in altered modules and differentially ex-
pressed genes (DEGs) were implemented.

Results: The extensive changes of gene correlations existed 
in 5 condition-specific PPI networks, which made different 
MCDs among different disease stages. The same number 
of modules (N=1952) were explored in 5 PPI networks. By 
comparing with normal condition, there were 463, 791, 
1060 and 345 altered modules in UC, early stage CRC, 
stage II and III CRC, respectively. Overall, 77, 110, 170 and 
110 common genes were identified between genes of altered 
modules and DEGs in UC, early stage CRC, stage II CRC 
and stage III CRC, respectively. Functional enrichment 
analyses indicated that cell cycle and oocyte meiosis were 
the common and most significant pathways in colonic dis-
eases. 

Conclusions: Tracking the altered modules from PPI net-
works is useful to uncover disrupted pathways in colonic 
diseases. Cell cycle and oocyte meiosis might be associated 
with the pathophysiological background of colonic diseases.
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Globally, CRC is the second most frequent 
cancer in women and the third in men [1]. It is 
predicted that nearly 376,300 new cases will be 
diagnosed and 191,000 will die from CRC in China 

in 2015. Despite advances in diagnosis and treat-
ment in the last decades, the prognosis of patients 
with CRC is still poor, and about half of the cas-
es after treatment die from this disease [2,3]. The 

JBUON 2016; 21(2): 366-374
ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com
E-mail: editorial_office@jbuon.com

ORIGINAL ARTICLE



Disrupted pathways in ulcerative colitis-related colorectal carcinoma 367

JBUON 2016; 21(2):367

outcomes depend on disease stage, resistance to 
chemotherapy, and so on. According to American 
Joint Committee on Cancer, 5-year survival rate 
is more than 80% in early-stage patients, yet de-
creases to less than 10% in patients with metas-
tasized cancer (stage IV) [4]. This raised a query if 
some of such deaths could be avoided when these 
cases were diagnosed in early stage. Thus, under-
standing the local pathophysiological alterations 
is very important. 

Several lines of evidence have demonstrated 
that inflammatory bowel disease (IBD) is a high 
risk factor for developing CRC [5]. UC, the most 
common clinical form of IBD, is a chronic relaps-
ing inflammatory condition of the gastrointesti-
nal tract, which is caused by an inappropriate and 
continuous inflammatory response to microbes 
in genetically susceptible hosts [6]. In patients 
with UC, about 16% develop CRC over  30 years 
[7]. Hence, targeting inflammatory mediators can 
decrease the incidence of CRC. Nevertheless, sup-
pressing inflammation in the therapeutic or pre-
venting process is in its infancy. Exploring the 
molecular pathways involved in cancer-related 
inflammation could contribute to illuminate the 
underlying mechanism of CRC.  

High throughput microarray technology, as 
a powerful approach for expression profiling, has 
played important roles in the molecular research 
of various diseases. Previous researches have pro-
duced a considerable amount of microarray data 
associated with colonic disease, including UC [8-
10] and CRC [11-14], and focused on the features 
in a specific condition of colonic disease. Howev-
er, IBDs predisposing to CRC have been discussed 
less in gene expression level. So far, comparative 
microarray analyses of samples from all these co-
lonic disorders have not been reported in the lit-
erature. Complementarily, comprehensive analy-
ses across UC and different CRC stages in parallel 
were conducted to determine conditional-specific 
and significant pathways involved in UC-related 
CRC in the present paper. Importantly, this exam-
ination is helpful to find significant alterations 
with lower risk of unspecificity [13].

As we all know, protein interactions play 
broad roles in understanding the cellular func-
tions. With the advert of high-throughput tech-
niques, significant amounts of protein interactions 
are generated. Nevertheless, it is noteworthy that 
protein interactions identified with high through-
put techniques can give high false positive and 
negative rates [15]. Thus, the method for evaluat-
ing the reliability of protein interactions is very 

important. Liu and colleagues devised an iterative 
scoring approach to evaluate the reliability of in-
teractions [16]. Moreover, this method has been 
demonstrated to be better than the FSWeight 
method proposed by Chua et al. [17]. But it is dif-
ficult to study the different stages of cancer syn-
chronously, and genes involved in different cancer 
stages may play different roles. Importantly, Sri-
hari et al. [18] offered a way to track the genes and 
modules behavior across specific conditions.

In the current study, with the aim of further 
revealing the mechanism of the initiation and 
progression of CRC, we conducted a systematic 
tracking of altered modules from the re-weight-
ed PPI networks to extract the significant and 
disturbed pathways among UC, early-stage CRC, 
stage II CRC and stage III CRC. Our results will 
provide further insights into the pathogenesis of 
colonic diseases. Moreover, the identified path-
ways might enforce the theoretical basis of drug 
discovery for CRC.

Methods

Data acquisition and preprocessing

A total of 8 gene expression datasets, including 
E-GEOD-9452 [8], E-GEOD-13367 [9], E-GEOD-36807 
[10], E-GEOD-9348 [11], E-GEOD-37892 [12], E-GE-
OD-60697, E-GEOD-4183 [13] and E-GEO-23878 [14], 
were recruited from ArrayExpress database based on 
the platform of Affymetrix Human Genome U133 Plus 
2.0 Array. E-GEOD-9452 microarray profile contained 8 
UC samples with macroscopic signs of inflammation, 
13 UC without macroscopic signs of inflammation and 
5 control subjects. E-GEOD-13367 included 8 active 
UC, 9 quiescent UC and 10 controls. A total of 15 UC 
samples and 7 control samples were obtained from 
E-GEOD-36807. E-GEOD-9348 included 70 early-stage 
CRC patients and 12 controls. E-GEOD-37892 included 
73 CRC patients with stage II, 57 with stage III CRC, 
and Gene profile E-GEOD-60697 contained 20 CRC cas-
es with stage III. We obtained 15 cases with CRC, 15 
with IBD, 15 with adenoma and 8 healthy controls from 
E-GEOD-4183. E-GEOD-23878 included 35 CRC and 24 
normal samples. Then, we extracted and merged the 
samples across 8 datasets. The merged data were di-
vided into 5 parts based on disease status, including 
normal, UC, early-stage CRC, stage II CRC and stage 
III CRC.

Prior to analysis, data preprocessing was conduct-
ed to eliminate undesired batch effects. Preprocessing 
procedures included background correction with robust 
multichip average method, normalization by means of 
quartile function, and perfectmatch/mismatch probe 
correction using micro array suite 5.0. Then, the probe 
data filtration was carried out over FeatureFilter meth-
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od. Finally, a total of 20,102 genes were obtained.

Conditional-specific PPI networks 

The Search Tool for the Retrieval of Interacting 
Genes (STRING) database provides all information 
about functional links between proteins, and the inter-
actions are offered with a combine-score in STRING 
[19]. In the current study, all human protein interac-
tions (N=1,048,576) with combine-scores were recruit-
ed from STRING database. To minimize false positive 
rate, only interactions with combine-score ≥ 0.7 were 
remained, including 9745 nodes and 63,869 interac-
tions. By intersecting with the expression data, the PPI 
sub-network, including 9117 nodes and 58494 interac-
tions, was constructed. 

Subsequently, we constructed and re-weighted 
the conditional-specific PPI networks by Pearson’s cor-
relation coefficient (PCC), a well-established measure 
of correlation between two variables. HS, HU, HE, HII 
and HIII were defined as the conditional-specific PPI 
sub-network of normal, UC, early-stage CRC, stage II 
CRC and stage III CRC, respectively. Meanwhile, PCC 
value of each interaction in normal and different stages 
of colonic disease and the changed values in different 
stages relative to normal condition were computed. 
The calculation of PCC was based on the formula de-
scribed previously [20].  

Modules from conditional-specific PPI sub-networks

From 5 conditional-specific PPI sub-networks, 
the conditional-specific modules were inferred using 
a clique-merging algorithm [21]. Firstly, all maximal 
cliques with node size more than 5 in PPI sub-networks 
were screened by means of fast depth-first method. 
Subsequently, the weighted interaction density (WID) 
of each maximal clique was computed and then ranked 
in descending sort. The formula of WID was as follows: 

where score(C) meant the WID score of the clique 
C; w(u,v) represented the weight of the interaction be-
tween u and v. 

A number of maximal cliques might overlap with 
each other, because there were numerous cliques in 
the PPI network. To reduce the result size, the over-
lapped maximal cliques should be removed or merged. 
To achieve this, the weighted inter-connectivity (WIC) 
between 2 cliques was calculated to determine whether 
these 2 overlapped cliques were merged or not based 
on the following formula:

The cliques mentioned above were sorted in de-
scending order based on their WIC,named as clique 
[C1], [C2], [C3]…….. [Cn]. The specific steps of removing and 
merging the highly overlapped cliques were as follows: 
For every maximal clique [Ci] in the list, we repeatedly 
checked whether a maximal clique [Cj] existed. If the 
ratio of the overlap between maximal clique [Ci] and 
maximal clique [Cj] was more than t0 which was a pre-
defined overlap-threshold. The t0 was set as 0.5 in our 
study. If there was such a maximal clique [Cj], the WIC 
was calculated between the non-overlapping proteins 
of [Ci] and [Cj]. When WIC was higher than tm, a pre-
defined merge-threshold (tm was set as 0.25 in the 
present study), the maximal clique [Cj] was merged into 
maximal clique [Ci] to develop a module. Otherwise, 
maximal clique [Cj] was abandoned. 

Altered modules in different disease stages

HS, HU, HE, HII and HIII stood for the PPI sub-network 
of normal, UC, early stage CRC, stage II CRC and stage 
III CRC, respectively. The sets of modules S = {S1, S2, …, 
Sh}, U = {U1, U2, …, Ul}, E = {E1, E2, …, Ek}, M = {M1, M2, 
…, Mm}, and T = {T1, T2, …, Tn} were indentified from 
HS, HU, HE, HII and HIII , respectively. For the module S, 
the module correlation density (MCD) was computed 
as follows: 

Similarly, the MCDs of modules in the other con-
ditions were also computed. Subsequently, randomiza-
tion test was used to measure the set of altered mod-
ule pairs based on the values of MCD in 5 conditions. 
P value was adjusted using false discovery rate (FDR) 
which was computed using the Benjamini & Hochberg 
method [22]. The altered modules were identified based 
on FDR less than 0.01.

Differentially expressed genes in different disease stages

It is indicated that the difference of gene expres-
sion levels could reflect the disease propensity. In this 
work, in order to identify important genes at different 
disease stages, DEGs in different disease stages were 
screened based on the expression profiles using linear 
models for microarray data (LIMMA) package [23]. The 
values of |logFoldChange| > 2 and p < 0.01 were chosen 
as the cutoff threshold.
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Pathway enrichment analysis

Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) is an analytic tool to inves-
tigate the biological meaning for a mass of genes [24]. 
In our study, DAVID was utilized for KEGG pathway 
enrichment analysis for genes in altered modules of 
different disease stages. Similarly, pathway enriched 
analyses were performed for DEGs of each disease 
stage. A p value <0.01 was applied to extract the sig-
nificant terms. 

Results

Expression data 

By merging 8 expression datasets, all sam-
ples were divided into 5 parts based on disease 
status, including 85 normal, 28 UC, 70 early-stage 
CRC, 73 stage II CRC and 77 stage III CRC. After 
data preprocessing, a total of 20,102 genes were 
extracted among these 5 groups. We further cal-
culated the differential expression levels of genes 
in different disease stages relative to normal con-
dition. Under the threshold values of |logFold-
Change| > 2 and p<0.01, a total of 1104,1090, 1073 
and 1644 DEGs were identified in UC, early-stage 
CRC, stage II CRC and stage III CRC, respectively. 
The details are shown in Table 1.  

Disruptions in PPI sub-networks

HS, HU, HE, HII and HIII stood for the re-weighted 

PPI sub-networks of normal, UC, early-stage CRC, 
stage II CRC and stage III CRC, respectively. The 
HS, HU, HE, HII  and HIII  PPI sub-networks exhibited 
the same number of nodes (N=9,117) and inter-
actions (N=58,494), however, the PCC frequency 
distributions were different across the 5 condi-
tions (Figure 1). Their mean scores of PCC were 
0.145, 0.170, 0.100, 0.142 and 0.134, respectively. 
Measuring these interactions more carefully, the 
scores of 36,309 interactions in early-stage CRC 
network were higher relative to other 4 networks, 
especially higher comparing with normal and UC 
networks. Similarly, the scores of 20,605 interac-
tions in the UC network were higher than in the 
other 4 networks, especially higher relative to 
early-stage, stage II and III CRC networks. The in-
teractions with score changes more than 0.6 were 
extracted for further analysis, which included 
5,937, 1,314, 4,781 and 3,945 interactions in UC, 
early-stage CRC, stage II and III CRC, respectively. 

Disruptions in altered modules in different disease 
stages

Clique-merging approach was utilized to ex-
tract modules from the PPI sub-networks of nor-
mal, UC and different stages of CRC. Based on the 
threshold of nodes >5, a total of 5,850 maximal 
cliques were screened for module analysis. Subse-
quently, we conducted extensively analyses among 
normal and disease modules to comprehend the 
disruption or alteration of modules. As exhibited 
in Table 2, we explored the same number of mod-
ules (N=1,952) in the PPI sub-networks of normal, 
UC, early-stage CRC, stage II CRC and stage III 
CRC. The mean module size in normal condition 
was a little larger than that in the other 4 condi-
tions. While the average MCD in normal condition 
was smaller than that in UC, it was greater than 
that in different stages of CRC. Meanwhile, mod-
ules in different conditions presented different 
frequency distribution of MCD (Figure 2). Next, 
by comparing module MCD in disease conditions 
with that in normal condition, a total of 463, 791, 
1060 and 345 altered modules were identified in 

Table 1. Differentially expressed genes in ulcerative 
colitis and different stages of colorectal carcinoma

Total 
DEGs

Up-regulated 
DEGs

Down-regulated 
DEGs

UC 1104 679 425

Early stage 
CRC 1090 451 639

Stage II CRC 1073 714 359

Stage III CRC 1644 1022 622

DEGs: differentially expressed genes, UC: ulcerative colitis, CRC: 
colorectal carcinoma

Table 2. Properties of modules in normal and different disease stages

Module set No. of 
modules

Average 
module size

Correlation

Max Min Average

Normal 1952 27.829 0.508 -0.0986 0.175

UC 1952 27.809 0.644 -0.0960 0.191

Early stage CRC 1952 27.809 0.411 -0.0580 0.103

Stage II CRC 1952 28.271 0.508 -0.101 0.157

Stage III CRC 1952 28.271 0.481 -0.0949 0.147

UC: ulcerative colitis, CRC: colorectal carcinoma
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UC, early-stage CRC, stage II and III CRC, respec-
tively.

Pathway enrichment analysis

To further explore the dysregulated biologi-
cal functions in disease condition, pathway anal-
ysis was conducted based on the genes in altered 
modules and DEGs. Based on p value < 0.01, genes 
in altered modules were enriched in 17, 26, 33 
and 19 significant pathways in UC, early-stage 
CRC, stage II CRC and stage III CRC, respective-
ly. The top 10 significant pathways in each stage 

are shown in Table 3. Among these, the enriched 
pathways in these altered modules across dif-
ferent disease stages were similar. Importantly, 
progesterone-mediated oocyte maturation path-
way was disturbed only in the altered module of 
stage III CRC. Moreover, the pathways of purine 
metabolism and RNA polymerase were mutual in 
different stages of CRC. Collectively, the common 
top 3 pathways were cell cycle, ribosome and oo-
cyte meiosis in the altered pathways of colonic 
diseases. 

Among these genes in altered modules, a to-
tal of 77, 110, 170 and 110 genes were differen-

Figure 2. The correlationwise frequency distribution of module correlation density in normal, UC and different 
stages of CRC.

Figure 1. The expression correlationwise frequency distribution of interactions in normal, UC and different stages 
of CRC.
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tially expressed in UC, early-stage CRC, stage II 
CRC and stage III CRC, respectively. Subsequent-
ly, pathway-enriched analyses were performed for 
these DEGs in altered modules, and a total of 4, 6, 
7 and 4 significant pathways were identified in UC, 
early-stage CRC, stage II CRC and stage III CRC, 

respectively, based on the cutoff-value of p<0.01 
as shown in Table 4. Among these, cell cycle and 
oocyte meiosis were the mutual pathways in UC 
and different stages of CRC. Importantly, DNA 
replication and adherence junction only existed in 
early-stage CRC and stage III CRC group, respec-

Table 3. The top 10 pathways of genes in altered modules based on p<0.01

Term name Count p value

UC

Proteasome 36 4.43E-35

Cell cycle 54 5.67E-35

Huntington’s disease 62 1.22E-33

Oxidative phosphorylation 53 9.00E-33

Parkinson’s disease 52 4.88E-32

Alzheimer’s disease 51 3.15E-25

Ribosome 37 2.13E-23

DNA replication 24 6.84E-21

Oocyte meiosis 31 7.91E-14

Mismatch repair 14 2.60E-11

Early stage CRC

Ribosome 64 1.17E-46

Cell cycle 64 7.43E-33

Proteasome 37 2.34E-28

Purine metabolism 60 3.73E-23

Huntington’s disease 65 8.29E-23

Pyrimidine metabolism 45 3.02E-21

Nucleotide excision repair 30 4.85E-20

RNA polymerase 24 1.00E-19

Parkinson’s disease 50 3.37E-19

Oxidative phosphorylation 50 7.26E-19

Stage II CRC

Cell cycle 78 6.07E-38

Ribosome 64 1.63E-37

Oxidative phosphorylation 66 6.65E-25

Proteasome 37 3.19E-23

Huntington’s disease 72 1.24E-19

Nucleotide excision repair 32 2.29E-18

Parkinson’s disease 57 3.94E-18

Purine metabolism 62 2.91E-17

RNA polymerase 24 1.89E-16

Alzheimer’s disease 62 1.34E-15

Stage III CRC

Ribosome 63 1.84E-57

Cell cycle 58 2.52E-37

Proteasome 36 1.55E-33

RNA polymerase 19 6.85E-16

Pyrimidine metabolism 32 1.77E-15

Spliceosome 33 1.54E-12

DNA replication 18 4.79E-12

Oocyte meiosis 30 6.67E-12

Purine metabolism 33 3.87E-10

Progesterone-mediated oocyte maturation 21 1.40E-07

UC: ulcerative colitis, CRC: colorectal carcinoma
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tively. Moreover, the pathways of small cell lung 
cancer, focal adhesion, ECM-receptor interaction 
and oxidative phosphorylation were unique in 
stage II CRC.

Discussion 

It is broadly accepted that inflammation ex-
erts a critical function in CRC initiation, promo-
tion and progression, while the molecular mech-
anisms of CRC progression are still unclear. With 
the aim of explaining the pathomechanism of 
UC-related CRC, we determined the altered biolog-
ical pathways of 4 different stages by systemati-
cal tracking the altered modules from re-weighted 
PPI networks. In this paper, a total of 463, 791, 
1,060 and 345 altered modules were identified 
in UC, early-stage CRC, stage II and III CRC, re-
spectively. In these altered modules, a total of 
77, 110, 170 and 110 DEGs were identified in UC, 
early-stage CRC, stage II CRC and stage III CRC. 

Pathway enrichment analyses for genes in altered 
modules and DEGs in different stages of disease 
were conducted. The results exhibited 2 disrupted 
pathways (cell cycle and oocyte meiosis), which 
were the most significant pathways across UC and 
different CRC stages.

In various organs, long-term chronic inflam-
mation is a widely well known risk factor for can-
cer development [25]. UC is a chronic relapsing in-
flammatory condition of the gastrointestinal tract, 
which confers a raised risk for CRC [26]. In the 
current study, cell cycle was found to be the mu-
tual altered pathway in UC and different CRC stag-
es. Cell cycle is a series of coordinated procedures, 
which exerts important roles of integrating the 
environment signal pathways with cell prolifera-
tion and cell growth [27]. The cell division cycle is 
a key event, by which several internal organs are 
updated. In the intestine, inflammatory responses 
cause abnormal differentiation and proliferation 
of the epithelial cells, and lead to cells loss. Colon 

Table 4. The significant pathways analyses of differentially expressed genes in altered modules in different 
stages based on p<0.01

Term name Count p value

UC

Cell cycle 12 7.20E-12

Oocyte meiosis 6 1.98E-04

Progesterone-mediated oocyte maturation 5 8.58E-04

Huntington’s disease 6 1.88E-03

Early stage CRC

Cell cycle
Oocyte meiosis

15
9

1.91E-13

1.61E-06

Huntington’s disease 8 4.29E-04

DNA replication 4 2.69E-03

Progesterone-mediated oocyte maturation 4.38E-03

Prostate cancer 4.96E-03

Stage II CRC

Cell cycle 17 1.22E-12

Oocyte meiosis 11 8.47E-07

Small cell lung cancer 7 5.92E-04

Focal adhesion 10 8.20E-04

Huntington’s disease 9 1.71E-03

ECM-receptor interaction 6 3.88E-03

Oxidative phosphorylation 7 5.54E-03

Stage III CRC

Cell cycle 15 2.84E-13

Oocyte meiosis 7 2.17E-04

Prostate cancer 6 6.69E-04

Adherence junction 5 3.22E-03

UC: ulcerative colitis, CRC: colorectal carcinoma, ECM: extracellular matrix
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cells replicate at a comparatively high rate with 
1010 epithelial cells being displaced each day [28]. 
This high rate of replication contributes to the 
susceptibility of the epithelium to mutation, and 
further to result in the CRC formation [29]. Impor-
tantly, inflammation can cause  overproduction 
of reactive oxygen and nitrogen species which 
further contribute to the initiation of CRC in UC 
patients via mediating pro-mitogenic activities 
[30]. In inflammatory cells and premalignant cells, 
NF-κB signaling is activated [31]. Aberrant activa-
tion of NF-κB was observed in more than 50% of 
CRC by increasing cell proliferation, regulating cell 
cycle progression as well as promoting cell invasion 
and metastasis [32,33]. Hence, we infer that cell cy-
cle might be a marker pathway for identification of 
high CRC-risk patients within the UC. 

Genomic instability is a definitive characteris-
tic in tumor progression, and chromosomal insta-
bility is one of the forms of genomic instability, re-
sulting from defects in chromosomal segregation, 
DNA damage response, and telomere stability. 
Chronic inflammatory microenvironment in the 
colon can increase oxidative stress which results 
in DNA damage, further contributing to CRC ini-
tiation [34]. Moreover, chromosome segregation 
in oocyte meiosis is controlled by kinetochores, 
which guarantee the fidelity of segregation [35]. 
Abnormal function of kinetochore causes the gains 
or losses of large portions of chromosomes, which 
leads to karyotypic variability [36]. Additionally, 
telomere instability is demonstrated to be relat-
ed with cancer and tolemere shortening might be 

the earlier risk of CRC within UC [7]. Significant-
ly, the chromosomal instability is a distinct path-
way in CRC pathogenesis [37]. It is worth noting 
that mammalian oocytes are notorious because of 
high rates of chromosomal abnormalities [38]. In 
the current study, oocyte meiosis was the com-
mon pathway across UC and different CRC stages. 
Accordingly, oocyte meiosis might play important 
roles in the initiation, development and progres-
sion of UC-related CRC. 

In conclusion, this integration-based analy-
sis has several advantages. Unlike publications of 
individual disease or individual disease stage, we 
focused on the common mechanisms among UC, 
early-stage CRC, stage II and III CRC, thus pro-
viding a global understanding of the pathogenesis 
of intestinal disorders. Our results indicate that 
pathways of cell cycle and oocyte meiosis play 
crucial roles in initiation, development and progres-
sion of UC-related CRC. Although our study lacked 
experimental validations in vivo or in vitro, our find-
ings provided some preliminary evidence to uncover 
potential candidate therapeutic strategies for CRC. 
Making use of specific blockage-related pathways in 
different stages of CRC will shed new insights for 
therapeutic and preventive methods. 
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