
Purpose: To identify altered pathways in an individual with 
clear cell renal cell carcinoma (ccRCC) using accumulated nor-
mal sample data.

Methods: Gene expression data of E-GEOD-40435 was 
downloaded from the ArrayExpress database. Gene-level sta-
tistics of genes in tumor and normal samples were computed. 
Then, the Average Z method was applied to calculate the indi-
vidual pathway aberrance score (iPAS). Subsequently, the sig-
nificantly altered pathways in a ccRCC sample were identified 
using T-test based on the pathway statistics values of normal 
and ccRCC samples. Moreover, the identified altered pathways 
were verified through two methods: one was assessing classifi-
cation capability for microarray data samples, and the other 
was computing the changed percentage of each pathway in 
ccRCC samples.

Results: Based on the threshold, 886 altered pathways were 
identified in all samples. The most significant pathways 

were potassium transport channels, proton-coupled mono-
carboxylate transport, beta oxidation of octanoyl-CoA to 
hexanoyl-CoA, antigen presentation: folding, assembly and 
peptide loading of class I MHC, and so on. Additionally, iPAS 
separated ccRCC from normal controls with an accuracy of 
0.980. Moreover, a total of 5 significant pathways with change 
in 100% ccRCC samples were extracted including proton-cou-
pled monocarboxylate transport, antigen presentation: fold-
ing, assembly and peptide loading of class I MHC, and so on. 

Conclusions: iPAS is useful to predict marker pathways for 
ccRCC with a high accuracy. Pathways of proton-coupled mo-
nocarboxylate transport, and antigen presentation: folding, 
assembly and peptide loading of class I MHC might play cru-
cial roles in ccRCC progression. 
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Renal cell carcinoma (RCC) represents the 
most common malignancy arising from renal pa-
renchyma [1], leading to about 63,920 newly di-
agnosed cases and 13,860 deaths in 2014 in USA 
[2]. To our knowledge, ccRCC is the most com-
mon histological form of RCC, which accounts for 
about 80% of all renal cancers [3]. Unfortunately, 
the 5-year survival rate is only 50-69% [4]. Moreo-
ver, ccRCC is resistant to chemotherapy as well as 
to radiotherapy [5]. Consequently, a better under-

standing of the underlying pathogenesis of ccRCC 
is very urgent to find new therapeutic interven-
tions.

As reported, in addition to smoking, cystic kid-
ney disease and hypertension, genetic and path-
way alterations also might contribute to the oc-
currence and progression of ccRCC [6,7]. Zubac et 
al. [8] have indicated that extracellular signal-reg-
ulated kinase 5 exerts important roles in ccRCC 
via mediating angiogenesis and proliferation. 
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Another study has demonstrated that the expres-
sion of plasma membrane–associated β-catenin is 
downregulated and related with advanced ccRCC 
[9]. Hypoxia-inducible factors pathway as well 
as upregulation of VEGFR and PDGFR pathways 
have been demonstrated to play important roles 
in ccRCC pathogenesis, via angiogenesis of renal 
tumors and the mutations in von Hippel-Lindau 
syndrome [10]. Additionally, Pei and colleagues 
have suggested that increased IMP3 enhances the 
cell migration and invasion of ccRCC through ac-
tivating NF-кB pathway [11]. However, the poten-
tial mechanisms for ccRCC progression are still 
not fully understood. 

In 2013, Wozniak et al. [12] provided the gene 
profile data of E-GEOD-40435 who identified the 
differentially expressed genes (DEGs) between 
ccRCC and adjacent non-tumor renal tissues. 
Moreover, pathway analyses and DNA methyl-
ation status were conducted.  However, current 
pathway analyses are principally focused on iden-
tifying altered pathways between cancer and nor-
mal control group, and are not fit for extracting 
the pathway aberrance which might occur in an 
individual sample. Moreover, the conventional 
aim of defining important biological knowledge 
is to analyzing the expression of thousands of 
genes. Fortunately, Ahn et al. [13] have provided 
a straightforward and novel way to identify the 
pathway aberrance of individual sample by com-
paring the expression data profile of an individ-
ual tumor sample with the accumulated normal 
samples to further calculate the individual iPAS. 
Additionally, this aim of defining significant path-
ways is to perform the analysis on a pathway level 
rather than analyzing the expression of genes in 
a brute-force manner. Complementarily, we used 
this method to screen the aberrance of the path-
way in a ccRCC sample through comparing it with 
the accumulated normal samples which were uti-
lized as a reference. 

Herein, in the present study, iPAS method 
was implemented to screen the altered pathways 
in ccRCC. Firstly, individual analysis was carried 
out to calculate the gene-level statistics and path-
way-level statistics by making use of the accu-
mulated normal samples. Then, the significantly 
altered pathways in a ccRCC sample were identi-
fied using T-test based on the pathway statistics 
values of normal and ccRCC samples. The altered 
pathways screened above were verified through 
two methods: one was assessing classification ca-
pability for microarray data samples, and the oth-
er was computing the changed percentage of each 

pathway in ccRCC samples.

Methods

Gene expression data and pathway data 

The expression profile numbered E-GEOD-40435 
[12] using the platform of A-GEOD-10558-Illumina Hu-
manHT-12 V4.0 expression beadchip was downloaded 
from the ArrayExpress database [14]. All the 101 pairs 
of ccRCC tumors as well as adjacent non-tumor renal 
tissue biopsies samples were acquired from Czech pa-
tients, which included 42 women and 59 men. Moreo-
ver, there were 47191 probe IDs in the E-GEOD-40435. 
Then, probe IDs with concentrated expression level 
were converted to gene symbols. Repeated genes of ex-
pression value in matrix were removed. Finally, 31,314 
genes were obtained. 

All biological pathways in humans were extracted 
from REACTOME pathway database (http://www.reac-
tome.org/) [15]. We filtered out pathways of which gene 
set size was more than 100. Moreover, the pathways 
with the intersection of 0 between genes in pathway 
and 31,314 genes obtained in our study were also ex-
cluded. Among pathways in REACTOME database, 1022 
pathways involving 5,181 genes remained according to 
the gene set size.

Individualized pathway analysis

Data pre-processing and gene-level statistics 
In the current study, we utilized accumulated nor-

mal samples as a reference and calculated the expres-
sion level of genes via comparing one cancer sample 
with many accumulated normal samples based on ro-
bust multichip average [16]. Briefly, the genes in all 
the collected normal samples for the reference were 
one by one normalized to the reference, and mean val-
ue and standard deviation (SD) of the expression lev-
el were computed. For individual tumor samples, we 
carried out quantile normalization after combining the 
single tumor sample with all reference samples. Sup-
porting the genes with multiple probes, gene expres-
sion level was exhibited through averaging probe ex-
pression level. Gene level statistics of each gene in an 
individual tumor sample was standardized according 
to the mean value and SD of the reference genes. The 
specific formula was:

where Zij represents the gene level statistics of 
each gene in an individual tumor sample; mean (Nj) is 
the mean value of j-th gene of normal sample; stdev 
(Nj) is the SD of the expression level of j-th gene of 
normal sample; Tij is the expression value of j-th gene 
of an individual tumor sample.     
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Pathway-level statistics 

The average Z method, a modification of existing 
pathway analysis techniques, was applied to calcu-
late the iPAS in normal and tumor samples. In brief, 
the gene level statistics of all genes in each pathway 
were extracted and summarized. Then, the average of 
gene-level information was transformed into the path-
way statistics of this pathway. That is:

where iPAS stands for the expression status of 
a pathway, Zi denotes the gene level statistics of i-th 
gene, and n is the number of genes belonging to the 
pathway. 

Overall significance test of pathways

To analyze the changes of pathways in all the 101 
pairs of ccRCC as well as the adjacent non-tumor renal 
tissue biopsies samples, Gitools [17] were utilized to 
build the cluster heat map of pathways. T-test was used 
for measurement of pathway statistics of each pathway 
in normal and tumor samples. All the collected nor-
mal samples for the reference were compared one by 
one with the reference to yield the null distribution of 
pathway statistics. Then, p value was generated, based 
on the comparison between the null distribution and 
a statistic of a single ccRCC sample. Moreover, the re-
sults of analysis were corrected for multiple hypothesis 
testing using the false discovery rate (FDR) control by 
Benjamini and Hochberg (BH). Pathways with a FDR 
adjusted p value of less than 0.01 were considered sig-
nificantly different.

Validation of the altered pathways

In the current study, we used two methods to ver-
ify the identified altered pathways based on iPAS using 
the accumulated normal data. One was assessing the 
classification capability for microarray data samples. 
The other was computing the changed percentage of 
each pathway in ccRCC samples.

Classification capability for microarray data samples

In order to evaluate the classification capacity of 
the altered pathways obtained from our methods for 
microarray data samples, the hierarchical clustering 
analysis was conducted based on the top 10 altered 
pathways using Gitools [17]. Under ideal condition, 
the samples should be divided into two main clusters 
including ccRCC cases as well as normal controls. We 
measured the iPAS method by testing the percentage of 
test samples that could be correctly classified.

In an attempt to assess the classification perfor-
mance of our approach, the term of accuracy was meas-
ured [18]. Accuracy is defined as the fraction of correct-
ly classified samples over all samples. 

where TP symbolizes the number of true positive 
samples correctly predicted as positive; TN represents 
the number of true negative samples correctly predict-
ed as negative; FP devotes the number of false posi-
tive samples incorrectly predicted as positive; and FN 
stands for the number of false negative samples incor-
rectly predicted as negative. 

Changed percentage of pathway

Significance was required against the null distribu-
tion produced from normal cases. Based on the distribu-
tion of pathway statistics of each pathway in normal 
samples, a pathway statistic from a single tumor sam-
ple was compared with the null distribution to yield 
p value. Then, the number of tumor samples in each 
pathway was obtained according to p value < 0.05. 
Thus, the ratio of tumor samples in specific aberrant 
pathway with p value < 0.05 to all tumor samples was 
received. In the current study, the remarkably aberrant 
pathways in all tumor samples were extracted based on 
the changed percentage of each pathway in all ccRCC 
samples = 100%. 

Results

Brief outline of average Z method and overall signifi-
cance test of pathways

The average Z method was used to analyze the 
pathways and assign to each sample c and path-
way P a score iPAS(c), which evaluated the extent 
to which the behavior of pathway P deviated in 
sample C, from normal samples. To determine the 
iPAS of this pathway, we applied the expression 
levels of all genes belonging to pathway P, using 
accumulated normal samples as a reference. 

After the gene-level statistics of genes was 
transformed into the pathway-level statistics val-
ue of each pathway, T-test was used for the meas-
urement of pathway statistics of each pathway in 
normal and tumor samples. Moreover, FDR ap-
proach was applied to correct significance levels 
(p values) for multiple hypothesis testing. Based 
on the FDR<0.01, 886 pathways were identified 
in ccRCC and normal samples. Subsequently, the 
cluster analysis was performed to explore the 
changes of the 886 pathways. The cluster heat 
map of these 886 pathways is shown in Figure 1. 
More importantly, these pathways were ranked in 
ascending order on the basis of FDR, and the top 
10 significant pathways are exhibited in Table 1.
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Validation of altered pathways 

Classification capability for microarray data samples

The clustering analysis was carried out to 
evaluate the classification capacity for microarray 
data samples using the top 10 altered pathways 
detected by iPAS method using accumulated nor-
mal data (Figure 2). The classification efficiency 

for microarray data samples was calculated based 
on accuracy. Our iPAS method separated ccRCC 
from normal controls with accuracy of 0.980. In 
light of this result, we infer that iPAS is useful 
to predict marker pathways for ccRCC with high 
accuracy.

Changed percentage of pathway

Figure 1. Clustered iPAS of dataset of clear cell renal cell carcinoma. Pathways (N=886) and samples (N=101) are 
clustered based on iPAS. The color scale represents the relative levels of pathway aberrance. The horizontal axis rep-
resents samples; the vertical coordinate represents deregulated pathways. iPAS means individual pathway aberrance 
score. 

Table 1. The top ten altered pathways based on the FDR < 0.01

Category Term p value

REACTOME Potassium transport channels 3.87E-80

Proton-coupled monocarboxylate transport 6.15E-74

Fructose catabolism 8.17E-70

Biotin transport and metabolism 1.55E-69

Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA 3.29E-69

Beta oxidation of octanoyl-CoA to hexanoyl-CoA 3.29E-69

Antigen presentation: folding 2.37E-68

Signal transduction by L1 2.65E-68

Vitamin B6 activation to pyridoxal phosphate 3.01E-66

Amino acid synthesis and interconversion (transamination) 1.28E-65

FDR: false discovery rate
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In the current study, we computed the changed 
percentage of each pathway in 101 ccRCC samples. 
Based on the changed percentage of a special path-
way in all ccRCC samples equal to 100%, a total of 
5 significant pathways were extracted including 
proton-coupled monocarboxylate transport, anti-
gen presentation: folding, assembly and peptide 
loading of class I MHC, hormone-sensitive lipase 
(HSL)-mediated triacylglycerol hydrolysis, chro-
mosome maintenance, and unwinding of DNA. 
Significantly, these 5 pathways were a fraction of 
886 altered pathways. Moreover, the gene-level 
statistics of 24 genes which were enriched in the 
pathway of antigen presentation: folding, assem-
bly and peptide loading of class I MHC was com-
puted, and depicted in Figure 3. From this image, 
we found that the gene expression levels of these 
genes in the ccRCC were universally disturbed 
relative to that in normal condition. Significant-
ly, the alteration of the expression level of HLA-G 
was remarkably obvious.

Discussion 

To gain more understanding of the molecu-
lar mechanisms underlying ccRCC, we applied 
a straightforward and novel pathway analysis 
approach to identify deregulated pathways in 
ccRCC, which was on the basis of the comparison 
of a tumor sample with the accumulated normal 
samples (we utilized the “reference” to refer to 
the accumulated normal samples). In the current 
study, a total of 886 altered pathways were iden-
tified in ccRCC and normal samples using T test. 
Among these, the most remarkably significant 
pathways were proton-coupled monocarboxylate 
transport, biotin transport and metabolism, beta 
oxidation of decanoyl-CoA to octanoyl-CoA-CoA, 
and antigen presentation: folding, assembly and 
peptide loading of class I MHC. Our iPAS method 
separated ccRCC from normal controls with accu-
racy of 0.98, which suggests that iPAS is useful to 
predict marker pathways for ccRCC with high ac-

Figure 2. The cluster heat map of the top 10 pathways. The color scale represents the relative levels of pathway 
aberrance; the horizontal axis represents samples; the vertical coordinate represents pathways. 
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curacy. Importantly, the pathways of proton-cou-
pled monocarboxylate transport, antigen pres-
entation: folding, assembly and peptide loading of 
class I MHC and so on were extracted based on 
the changed percentage =100%. Comprehensively, 
we found that proton-coupled monocarboxylate 
transport, and antigen presentation: folding, as-
sembly and peptide loading of class I MHC were 
the most significant pathways.

Many important pathways are deregulat-
ed in the initiation and progression of cancer. 
Identification of the involved aberrant pathways 
in an individual was of great importance to ex-
plore patho-mechanisms and to further find new 
strategies for personal treatment in the future 
[19]. Indeed, many current methods for pathway 
analysis characterize the activity of a pathway for 
the entire samples but do not offer information 
on the aberrance in an individual tumor sample. 
With the demand for personalized interpretation 
of pathways, some pathway analyses have been 
developed to examine the individualized pathway 
[20,21]. PARADIGM, as an analysis tool, infers 
a pathway condition by using known functional 
structures.Moreover, PARADIGM performs better 
with multiple omics. However, it has less freedom 
of data and gene sets and needs predefined func-
tional structure among omics objects. The per-
sonal pathway deregulation score (PDS) proposed 

by Drier and colleagues [20] is another method 
for personalized interpretation of pathways. This 
method performs better than PARADIGM. Un-
fortunately, PDS needs the entire cohort data to 
extract the principle curve to explain an individ-
ual pathway. Unlike the two methods mentioned 
above, Ahn et al. [13] have provided a straightfor-
ward and novel way that uses the Average Z method 
to calculate the iPAS to further identify the path-
way aberrance of individual sample by comparing 
the expression data profile of an individual tumor 
sample with the accumulated normal samples. 
Additionally, this method is suitable for single 
layer omics data and expandable to interpret a 
patient that lacks cohort data. Previous studies 
have demonstrated a clear relationship between 
cancer and the pathway of proton-coupled mono-
carboxylate transport, thus we thought this path-
way should be identified. In the current study, 
the Average Z proposed as candidate for iPAS ex-
hibited that remarkable association of the of pro-
ton-coupled monocarboxylate transport pathway. 
This finding satisfies us that iPAS - by means of 
Average Z method - can offer the basic knowledge 
about cancer, and can be beneficial to identify can-
cer.

Glucose metabolism alteration is an impor-
tant hallmark of cancer, which is referred to as 
Warburg effect [22]. To our knowledge, glucose 

Figure 3. Expression pattern of genes in the pathway of antigen presentation: folding, assembly and peptide loading 
of class I MHC. Each line stands for sample (red: tumor; blue: normal).
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is vitally required by cancer cells, important for 
their growth [23]. Moreover, cancer cells convert 
glucose into lactate to further produce energy 
(ATP), even though under the state of sufficient 
oxygen relative to normal cells. It is noteworthy 
that the dependency on high levels of glycoly-
sis is essential for the generation of ATP, which 
is associated with drug resistance and decreased 
anticancer efficiency [24]. In addition to ATP, lac-
tate can attribute to angiogenesis which is crucial 
during the tumor growth and metastasis process-
es [25,26]. Crucially, lactate, as an anion, needs 
transporters to cross the cell membrane. Several 
reports have demonstrated that proton-coupled 
monocarboxylate transporters (MCTs) participate 
in the transport of monocarboxylic acids [27,28]. 
MCT1, one member of these transporters, plays 
important roles in the uptake of lactic acid from 
glycolytic cells [29], while MCT4, another mem-
ber of the transporters, plays crucial roles in the 
efflux of lactic acid from glycolytic cells [30]. 
Moreover, Dhup et al. [31] have demonstrated that 
these MCTs, especially inhibition of MCT1, might 
be applied as potential new anti-cancer targets. 
Like most cancers, ccRCC also displays this meta-
bolic condition to make use of glucolysis for ATP 
production [32]. Consistent with a previous study 
[33], the pathway of proton-coupled monocarbox-
ylate transporters was universally aberrant in all 
the ccRCC samples relative to normal samples in 
our study. Accordingly, this pathway might aid the 
cell proliferation and survival of ccRCC through 
imbalanced exchange of lactate.

Another major aberrant pathway of anti-
gen presentation: folding, assembly and peptide 
loading of class I MHC was identified involving 

24 genes. Significantly, the alteration of the ex-
pression level of HLA-G was remarkably obvious 
among these 24 genes. MHC class I molecules ex-
erts functions of immune surveillance by binding 
to CD8+ T cells, and these molecules act in con-
cert, making up the MHC class I antigen process-
ing and presentation machinery (APM) [34,35]. 
Significantly, defects in the expression and func-
tion of APM components have been found in vari-
ous solid tumors including RCC [36-38]. Kasajima 
et al. [39] have demonstrated that the down-reg-
ulation of APM is benefited for the therapy of 
colorectal cancer. HLA-G is one member of HLA 
family which is the main MHC class I molecule. 
Importantly, HLA-G plays a crucial role in im-
mune surveillance [40]. HLA-G is reported to be 
related with high risk of many cancers via involv-
ing the cell-mediated immune responses [41,42]. 
Accordingly, the pathway of antigen presentation: 
folding, assembly and peptide loading of class I 
MHC might exert crucial functions in ccRCC pro-
gression, probably by regulating the immune re-
sponse.

We applied personalized-based pathway anal-
ysis through introducing the concept of compar-
ing an individual tumor with many accumulated 
normal samples. The clinical importance of this 
method is that it is able to explain a cancer case in 
a single patient. Based on the results, we showed 
that proton-coupled monocarboxylate transport 
and antigen presentation: folding, assembly and 
peptide loading of class I MHC were the signif-
icant pathways for ccRCC. However, the valida-
tion using other datasets would be conducted to 
demonstrate that these pathways are useful in 
classifying ccRCC and normal sample.
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