
Conventional drug design embraces the “one gene, one drug, 
one disease” philosophy. Nowadays, new generation of an-
ti-cancer drugs, able to inhibit more than one pathway, is belie-
ved to play a major role in contemporary anticancer drug rese-
arch. In this way, polypharmacology, focusing on multi-target 
drugs, has emerged as a new paradigm in drug discovery. A 
number of recent successful drugs have in part or in whole 
emerged from a structure-based research approach. Many ad-
vances including crystallography and informatics are behind 
these successes. Increasing insight into the genetics and mole-
cular biology of cancer has resulted in the identification of an 
increasing number of potential molecular targets, for antican-
cer drug discovery and development. These targets can be ap-
proached through exploitation of emerging structural biology, 
“rational” drug design, screening of chemical libraries, or a 
combination of these methods. The result is the rapid discovery 
of new anticancer drugs. In this article we discuss the appli-
cation of molecular modeling, molecular docking and virtual 
high-throughput screening to multi-targeted anticancer drug 
discovery. Efforts have been made to employ in silico methods 

for facilitating the search and design of selective multi-target 
agents. These computer aided molecular design methods have 
shown promising potential in facilitating drug discovery dire-
cted at selective multiple targets and is expected to contribute 
to intelligent lead anticancer drugs. 
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To understand and cure a disease is as diffi-
cult as ever. There is an urgent need to make sen-
se of it all, going from sequence to information. 
Yet, there are no revolutionary insights, because 
it’s a most complicated issue. Medicinal chemists 
today are facing a serious challenge because of 
the increased cost and enormous amount of time 
taken to discover a new drug, and also because of 

fierce competition among different drug compa-
nies. The hope lies in the rational design of new 
therapeutic agents. Conventional strategy for the 
discovery of new drugs is to take a lead structure 
and develop analog molecule to exhibit desired 
biological properties. The strategy for screening 
single-target and highly specific agents has been 
widely researched [1]. 
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The lead is generally found by chance or ran-
dom screening. Old strategies for drug design 
and development involve laborious trial and error 
approaches. However, many effective drugs are 
found today by using this approach. The traditio-
nal processes are now supplemented by more di-
rect approaches and are derived from understan-
ding the pathogenetic molecular processes of the 
diseases. 

New era in rational anticancer drug de-
sign: from single to multi-target drugs 
in cancer therapy

In the pharmacological industry in the era of 
full genome sequencing, there has already been a 
shift from symptomatic oriented drugs to patho-
logy-based drugs whose targets are the genes and 
proteins involved in carcinogenesis. Drugs targe-
ting the affected pathway have thus the potential 
to become therapeutic [2]. 

Pathology-based and target-based drug dis-
coveries constitute two principal approaches in 
drug innovation, which are mutually complemen-
tary and collaborative. Recent developments in 
biological systems and overall clinical experience 
have revealed that the single-target drugs may 
not always induce the desired effect to the entire 
biological system even if they successfully inhibit 
or activate a specific target [3,4]. Researchers in 
efforts to find more effective antineoplastic treat-
ments are looking toward the chemical industry 
as well as traditional herbal medicines to find 
multi-target interventions. 

Three approaches have proven to be effective 
in seeking multi-target drugs: (1) designing drugs 
with multiple components; (2) discovering drugs 
through the study of synergistic compound-com-
pound interactions in medicinal herbs or among 
chemical drugs and herbal components; and (3) 
developing drugs to tackle complex multi-com-
ponent diseases [5]. Multi-target drugs against 
selective multiple targets improve therapeutic ef-
ficacy, safety and resistance profiles. One major 
target of multi-targeted agents is the human ki-
nome and especially the receptor tyrosine kina-
ses (RTKs) which are a vital element in regulating 
many intracellular signal transduction pathways 
involved in cancer growth.

We are witnessing an explosion of knowled-
ge around signal transduction pathways, impac-
ting virtually all areas of biology and medicine. 
The exploration of the most significant signaling 
pathways suitable for the development of new 

multi-target drugs that are categorized under ch-
romatin modification, MAP kinase signaling, Akt 
signaling, energy metabolism related signaling, 
translational control, cell cycle control, immuno-
logy and others, is in progress. Therapeutic targets 
against cancer include tubulin, topoisomerases, 
various types of tyrosine kinases, mammalian tar-
get of rapamycin, phosphatidylinositol 3-kinase, 
histone deacetylases, poly (ADP-ribose) polyme-
rase (PARP), focal adhesion kinase, AMP-activated 
protein kinase (AMPK), 26S proteasome complex, 
and cyclooxygenase, among others [6].

Dual or multiple-target drugs can modulate 
two receptors, inhibit two enzymes, act on an en-
zyme and a receptor, or affect an ion channel and 
a transporter. Thus the original concept of key 
and lock analogy is modernized into hand-glo-
ve analogy obtaining multiple functions at once. 
From the viewpoint of molecular design, a dual 
or multiple-target drug molecule can simply be 
created by combining two or more active mole-
cules or their pharmacophores with a linker. The 
integrated molecule comes into an entity either 
by fusing or by merging the common structural 
or pharmacophoric features of two active mole-
cules, depending on the extent of the common 
features (Figure 1a,b). Although multi-target ac-
tion for an agent can be achieved in several ways, 
it is the coordinated effect at the set of targets 
that results in the biological and, hopefully, the-
rapeutic effect [7]. This approach facilitates the 
reduction of molecular size and molecular wei-
ght and the consequent optimal overlap between 
the pharmacodynamic and pharmacokinetic pro-
perties certainly elevates its probability of being 
a marketed drug.

Therapeutic agents directed at an indivi-
dual target frequently show reduced efficacies, 
undesired safety profiles and drug resistances 
due to network robustness, redundancy, cross-
talk, compensatory and neutralizing actions [8], 
anti-target and counter-target activities [9], and 
on-target and off-target toxicities [10]. Multi-tar-
get agents directed at selected multiple targets, 
have been increasingly explored, for achieving 
enhanced therapeutic efficacies, improved safety 
profiles, and reduced resistance activities by si-
multaneously modulating the activity of a pri-
mary therapeutic target and the counteractive 
elements and resistance activities [11], while li-
miting unwanted cross-reactivities via optimi-
zation of target selectivity [12]. Recent kinase 
drugs, such as imatinib mesylate and sunitinib 
[13], though perhaps designed for specificity, 
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modulate multiple targets and these “off-target” 
activities also may be essential for efficacy [14].

In silico methods have been widely explo-
red for facilitating lead discovery against indi-
vidual targets [15,16]. The conventional strategy 
for the discovery of new drugs is to take a lead 
structure, and develop analog molecules to ex-
hibit desired biological properties. During the 
past years there has been a steady and exciting 
growth of novel inhibitors identified throu-
gh computational analysis of target structure. 
A combination of more structures, advances in 
homology modeling, better docking and scoring 
tools, fragment-based methods, and advances in 
virtual screening have been fundamental in this 
progress. In particular, molecular docking [17], 
pharmacophore [18], SAR and QSAR [19], machi-
ne learning [20], and combination methods [21], 
have been extensively used for searching and de-
signing active compounds against individual tar-
gets. Some of these methods have recently been 
explored for identifying and designing multi-tar-
get agents. Recently, a novel method was deve-
loped for the systematic in silico investigation of 
synergistic effects of currently available drugs 
on genome-scale metabolic networks [22]. Wei 

et al. have developed a computer-assisted stra-
tegy to screen for multi-target inhibitors using a 
combination of molecular docking and common 
pharmacophore matching [23].

Kinases in cancer 

The kinase family is one of the largest tar-
get families in the human genome. It is estima-
ted that there are more than 500 members of the 
major classes of protein serine/threonine, tyrosi-
ne, and dual specificity kinases within the human 
genome [24]. Protein phosphorylation is one of 
the most significant signal transduction mecha-
nisms by which intercellular signals regulate cru-
cial intracellular processes such as ion transport, 
cellular proliferation, and hormone responses 
[25]. Protein kinases represent as much as 30% of 
all protein targets under investigation by pharma-
ceutical companies [25,26]. 

The human protein kinase family is divided 
into the following groups: (1) AGC kinases - conta-
ining PKA, PKC and PKG; (2) CaM kinases - conta-
ining the calcium/calmodulin-dependent protein 
kinases; (3) CK1 - containing the casein kinase 1 
group; (4) CMGC - containing CDK, MAPK, GSK3 

Figure 1. a. Illustration of fragment of the active molecules-based approach to multi-target drug discovery. A 
multiple-target drug can modulate e.g. three target proteins. A connective molecule (the drug multi-targeting), is 
combining three active molecules or their pharmacophore fragments (namely, circle, triangle, square) with a linker 
by fusing or merging the common structural or pharmacophoric features of the active molecules. b. Key (ligand) and 
lock (target) analogy in multi-targeted agents. The shaft of the key (pharmacophore) is more important in eliciting 
the biologic response than the base of the key which is less subject to structural restrictions. Frequently, different 
ligands share similar pharmacophores and thus exhibit similar activity (a and b) while some have less overlapping 
features (d and e). A multi-targeted ligand (c) can contain different pharmacophores that can have biologic effects on 
different targets. Adapted from Talevi (2015) [89].

(a) (b)
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and CLK kinases; (5) STE - containing the homo-
logs of yeast Sterile 7, Sterile 11, and Sterile 20 
kinases; (6) TK - containing the tyrosine kinases; 
and (7) TKL - containing the tyrosine-kinase like 
group of kinases.

The kinase dendrograms (http://kinase.com/
human/kinome/ & http://www.cellsignal.com/re-
ference/kinase/index.html) show the sequence si-
milarity between protein’s catalytic domains. The 
distance along the branches between two kinases 
is proportional to the divergence between their 
sequences. This may be exploited by the approach 
of multi-target drug design, aiming to intervene 
in multiple cytoplasmic signaling pathways, inc-
luding the Ras/Raf mitogen-activated protein ki-
nase (MAPK) pathway, the phosphoinositol 3’-ki-
nase (PI3K)/Akt pathway, the signal transducer 
and activator of transcription 3 (STAT3) pathway, 
the protein kinase C (PKC) pathway and scaffol-
ding proteins. The inhibition of multiple growth 
related kinases, especially tyrosine kinases, at the 
same time by one drug, might provide new thera-
pies for diseases such as cancer [27]. 

Tyrosine Kinases: a major target 

Protein Tyrosine Kinase Receptors (RTKs) 
have emerged as new promising targets for cancer 
therapy. They are essential enzymes in cellular sig-
naling processes and signal transduction pathways 
that regulate cell proliferation and death, differen-
tiation, migration and metabolism by catalyzing 
protein phosphorylation and dephosphorylation 
and tumor angiogenesis [28]. The advances in our 
understanding of the oncogenic activation of these 
receptors have been matched by the identificati-
on of new structural classes of kinase inhibitors 
with improved potency, specificity and efficacy 
[29]. 

Targeting several RTKs can be done using 
single agents, the multi-target tyrosine kinase 
inhibitors (MTKIs), drugs that could dramatical-
ly affect the progression of cancer and decrease 
tumor resistance [28]. Two classes of compounds 
targeting RTKs are currently used in clinical pra-
ctice: monoclonal antibodies and tyrosine kinase 
inhibitors. The first drugs with demonstrated cli-
nical efficacy were mainly inhibitors of the ErbB 
family of receptors (i.e., EGFR and HER-2), either 
monoclonal antibodies (MAbs) or tyrosine kina-
se inhibitors (TKIs). The era of targeted therapy 
began with the approval of trastuzumab, a mo-
noclonal antibody against HER-2 (human epider-
mal growth factor receptor 2), for treatment of 
metastatic breast cancer, and imatinib (STI–571), 

a small tyrosine kinase inhibitor targeting BCR-
Abl, in chronic myeloid leukemia [30]. 

Despite the initial enthusiasm for the effica-
cy of single TKIs, clinicians had to face soon the 
problem of relapse, as almost invariably all can-
cer patients developed drug resistance, often due 
to the activation of alternative RTK pathways. In 
this view, the rationale at the basis of targeting 
drugs is radically shifting. Different strategies 
were pursued to inhibit multiple signaling pat-
hways or multiple steps in the same pathway, 
either by the development of multi-targeted 
agents or with the combination of single targe-
ted drugs. Now, there is a general agreement that 
molecules interfering simultaneously with mul-
tiple RTKs might be more effective than single 
target agents. 

The approval by FDA (Food and Drug Ad-
ministration) and EMEA (European Medicines 
Agency), of the successful anti-angiogenic mul-
ti-target tyrosine kinase inhibitors, sorafenib and 
sunitinib targeting VEGFR, PDGFR (plateled-de-
rived growth factor receptor), FLT-3 (FMS-related 
tyrosine kinase 3) and c-Kit proteins and the dual 
tyrosine kinase inhibitors dasatinib against Abl 
and Src, and lapatinib against EGFR and ErbB-2 
(HER-2/neu), marked the coming of age of this 
new generation of drugs [31]. These multi-target 
anticancer agents inhibit a primary therapeutic 
target that promotes tumor growth in a specific 
cancer patient group and block the alternative 
signaling or escape mechanism [32] 

Many more similar multi-target drugs are 
undergoing clinical trials for a range of cancer 
types. Exelixis has developed the XL999 inhibitor 
by using their Spectrum Selective Kinase Inhibi-
tor technology platform (SSKI) [33]. Each inhibi-
tor developed with SSKI has a different spectrum 
of RTK inhibition, offering the potential to achie-
ve efficacy through inhibition of multiple RTKs 
based on their established or potential invol-
vement in cancer. SSKI’s target both the tumor 
and its vasculature and each compound has the 
potential to maximize efficacy through simul-
taneous inhibition of multiple RTKs. In pre-cli-
nical testing, XL999 inhibited KDR, FGFR1, PD-
GFR-beta and FLT3 with high potency. 

Other Kinase targets: the options are ever expanding 

Although TKIs are the most evaluated kinase 
inhibitors in clinical trials, other strong kinase 
target candidates studied for drug discovery in 
the treatment of cancer are the serine-threonine 
kinases (Ser/Thr kinase inhibitors, representing 

http://kinase.com/human/kinome/
http://kinase.com/human/kinome/
http://www.cellsignal.com/reference/kinase/index.html
http://www.cellsignal.com/reference/kinase/index.html
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a third of kinase inhibitors, the members of AGC 
kinase family, containing PKA, PKG and PKC 
kinase families), aurora kinases (playing a role 
in cell cycle regulation), CMGC (containing cyc-
lin-dependent kinases (CDK), MAPK, GSK3, CLK), 
CDK (playing major role in cell cycle) and STE 
kinase families. 

The National Human Genome Research Ins-
titute and the National Cancer Institute have 
launched The Cancer Genome Atlas (TCGA) [34] 
with an overarching goal of understanding the 
molecular basis of cancer, to improve our ability 
to diagnose, treat and prevent cancer. The deve-
lopment of genomic functional analysis software 
tools is important to human genome and cancer 
genome research. The aim of the scientists in this 
field is to develop next generation computational 
solutions for structural and functional genomics, 
in silico screening of leading compounds and de-
signing new drugs, and annotation of genes for 
human cancer genomes through automated ap-
proaches. The effective utilization of very large 
databases combined with large-scale genomic 
computing needs significant computer science 
and engineering in order to tackle this biome-
dical problem. Scientists focus on the software 
development of new generation of computatio-
nal intelligence for the personalized healthcare 
and translational medicine that will lead to new 
understanding of human diseases and future tre-

atment. Hundreds of additional kinases that are 
coded in the human genome will be discovered, 
some of which may function as important regu-
lators of signaling pathways potentially impor-
tant in cancer. 

Multi-target therapeutics and network 
analysis for cancer treatment

Drug design based on network analysis 

The effect of a drug is studied in the context 
of relevant interactions (link) present in protein, 
regulatory, metabolic or signaling networks whe-
re the respective target is called an “element”. 
Analyses based on genomic, proteomic, meta-
bolism, etc. are methods to identify the syste-
mic analysis of multi-target drug action [35]. A 
simple topological model is created by suppres-
sing an element or a link and then its effect on 
the network is studied (Figure 2). It is found that 
multiple but partial attacks on various elements 
or links are more efficient than complete attack on 
a single element or link because the former affect 
more increased number of network links. 

Multi-target approach in drug discovery (or mul-
ti-target lead discovery)

Current experience and the greater unders-
tanding of the disease network reveal that inhi-

Table 1. FDA approved tyrosine kinase inhibitors

Molecule Type of cancer Molecular target

Afatinib NSCLC EGFR

Axitinib RCC VEGFR

Bosutinib CML Bcr–abl

Cabozantanib MTC RET, VEGFR, MET, TRKB, TIE2

Cetuximab Colon, NSCLC, HNC EGFR

Crizotinib NSCLC EML4–ALK, ROS1, MET

Dabrafenib Melanoma BRAF V600E

Dasatinib CML Bcr–abl, SRC, cKIT, PDGFR

Erlotinib NSCLC EGFR (HER1)

Everolimus Breast, RCC, pNET mTOR

Gefitinib NSCLC HER1

Imatinib CML, GIST, ALL BCR-ABL, s-KIT, PDGFR

Nilotinib CML BCR-ABL

Sunitinib GIST, RCC VEGFR, PDGFR, c-KIT, FLT-3

Sorafenib RCC, HCC, prostate BRAF, VEGFR, PDGFR

Trastuzumab Breast, stomach HER2

Trametinib Melanoma MEK1, MEK2

Regorafenib Colorectal PDGFR, TIE2, VEGFR, c-KIT

Vandetanib MTC EGFR, VEGFR, RET
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bition of an individual target is - in many cases 
- insufficient to restore the system to the previous 
“healthy state” thus, modulating the activity of 
multiple targets might be required to achieve op-
timal therapeutic benefit [36]. A new generation of 
multi-targeted agents is currently emerging from 
clinical development. There are several categories 
of multi-target therapeutics that can be defined 
on the basis of target relationship. Multi-target 
drugs multiply the number of pharmacologically 
relevant target molecules by introducing a set of 
indirect, network-dependent effects. Parallel with 
this, the low-affinity binding of multi-targeted 
drugs eases the constraints of druggability and 
significantly increases the size of the druggable 
proteome. These effects tremendously expand the 
number of potential drug targets and introduce 
novel classes of multi-targeted drugs with lower 
side effects and toxicity. Compared to single-tar-
geted agents, the wider effect on a network leads 
to a higher efficacy.

Therefore, the currently followed drug-deve-
lopment paradigm can be summarized as to: (1) 
find a target of clinical relevance; and (2) identify 
the “best-binder druggable molecule” by rational 
drug design based on the three-dimensional stru-
cture of the target [37]. Multi-target drugs offer a 
magnification of the “sweet spot” of drug disco-
very, meaning the overlap between pathways, whi-
ch are interesting from the pharmacological point 
of view, and the hits of chemical proteomics, whi-
ch represent those proteins, that can interact with 
druggable molecules (meaning small, hydrophobic 
molecules with a good bioavailability). The “sweet 

spot” represents those few hundred proteins, whi-
ch are both parts of interesting pathways and are 
druggable. Multi-targeting lead discovery is a pro-
mising tool for the identification of unexpectedly 
novel effects of drug combinations [37,38]. 

The modern drug discovery has shifted its fo-
cus from the concept of one gene, one drug, and 
one disease, i.e. single-targeted strategy to mul-
ti-targeted strategy, which is based on network 
biology [39]. Single-targeted agents suffer from 
lack of efficacy, toxicity, drug resistance and huge 
investment. A multi-targeted agent possibly cir-
cumvents the problems regarding equitable phar-
macokinetics and bio-distribution. The formulati-
on of an individual active agent is easier compa-
red with that of a mixture [40]. 

To manufacture polypharmacological drugs 
(like sunitinib and sorafenib described above), one 
has to identify a lead compound which has acti-
vity against multiple targets without becoming 
non-selective and then this should be transformed 
into a drug with a good pharmaceutical profile. 
Optimizing the potency at both targets is the chal-
lenging part. 

To predict a multi-target compound requi-
res high level computational methods to explore 
a vast number of possible drug and target com-
binations which are compatible with each other. 
The traditional approach to drug discovery of 
“one drug-one target-one disease” is insufficient, 
especially for complex diseases, like cancer. This 
inadequacy is partially addressed by accepting the 
notion of polypharmacology-one drug is likely to 
bind to multiple targets with varying affinity. 

Figure 2. Drug design based on network analysis
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Identifying multiple targets 

Identifying multiple targets for a drug is a 
complex and challenging task. A promising ap-
proach is to develop a structural proteome-wide 
off-target determination pipeline, by integrating 
computational methods for high throughput li-
gand binding site comparison and binding free 
energy calculations to predict potential off-targets 
for known drugs [39,40].The goal then is to per-
turb multiple relevant targets. Perturbation may 
be achievable through the use of drug cocktails, 
or possibly through a single drug that has the ap-
propriate polypharmacological effect [3,40,41]. To 
rationally design such a drug is a very complex 
problem that begins by identifying the targets to 
which that drug binds. Available computational 
tools that quantitatively study protein-ligand in-
teractions are based predominantly on protein-li-
gand docking and free energy calculations for the 
protein-ligand complex [42,43].

Multi-target models in clinical trials

In the literature, there is a plethora of pub-
lications dealing with the rationale underlying 
the multi-targeted approach. As a consequence, a 
whole new wave of multi-targeted compounds is 
moving into clinical trials. As previously menti-
oned, network models suggest that partial inhi-
bition of a small number of targets can be more 
efficient than the complete inhibition of a single 
target [3]. The success stories of multi-target dru-
gs and combinatorial therapies suggest that sys-
tematic drug-design strategies should be directed 
against multiple targets.

Combining kinase-focused chemistry, kino-
me-wide profiling and cancer genetics provides a 
powerful system of polypharmacological appro-
ach towards developing kinase-inhibitor drugs 
with a maximal anticancer therapeutic index [44]. 
The complexity of cancer and the unpredictability 
of optimal kinase-inhibition profiles led to Ret-ki-
nase-driven model for the mechanistic basis of ef-
ficacy and dose-limiting toxicity and the design of 
a drug that hits multiple targets through “rational 
polypharmacology”. The developed lead drugs, 
AD57 and AD80, suppressed several cancer sig-
nals emanating from Ret. These signals include 
some of the best-known cancer proteins such as 
Raf, Src, and Tor. Ret itself was not entirely shut 
down, which suggested to scientists that a patient 
would experience fewer side effects. On the other 
hand, reducing Tor made AD57 more toxic, so re-
searchers christened Tor an “anti-target”, a new 
concept in drug discovery. This approach repre-

sents a new concept which is believed to have gre-
at success in suppressing tumors. 

In the active area for the search of more po-
tent anti-breast cancer drugs, the use of approac-
hes based on chemo-informatics has played a very 
important role. Speck-Planche et al. [45] have int-
roduced the first chemo-informatics multi-target 
approach for the in silico design and virtual scre-
ening of anti-breast cancer agents against 13 cell 
lines. Multi-target QSAR discriminant model was 
developed using a large and heterogeneous data-
base of compounds. Several fragments extracted 
from the molecules were identified as potential 
substructural features responsible for anti-bre-
ast cancer activity and new molecules designed 
from those fragments with positive contributions 
were suggested as possible potent and versatile 
anti-breast,brain, colorectal and prostate cancer 
agents [46-48]. 

Wei et al. [23] have developed a computer-as-
sisted strategy to screen for multi-target inhibi-
tors using a combination of molecular docking 
and common pharmacophore matching. This 
strategy was successfully applied to screen for 
dual-target inhibitors against both the human 
leukotriene A(4) hydrolase (hLTA4H) and the hu-
man non pancreatic secretory phospholipase A2 
(hnps-PLA2). With the aid of this pharmacophore 
model, a number of compounds screened from the 
chemical database MDL Available Chemical Di-
rectory, were found to inhibit these enzymes in 
nanomolar concentrations. Similarly, combining 
molecular docking and pharmacophore filtering 
has been employed in a way to identify chemi-
cal compounds that can simultaneously inhibit 
hLTA4H and the human leukotriene C4 synthase 
(hLTC4S) enzymes [49]. A huge set of 4966 drug-
like compounds from the Maybridge database 
(http://www.maybridge.com/) were docked into 
the active site of hLTA4H using the GOLD prog-
ram (http://www.ccdc.cam.ac.uk/products/life_
sciences/gold/). Common feature pharmacophore 
models were developed from the known inhibitors 
of both the targets using Accelrys Discovery Stu-
dio 2.5 (http://accelrys.com/events/webinars/dis-
covery-studio-25/abstracts.html). The hits from 
the hLTA4H docking were filtered to match the 
chemical features of both the pharmacophore mo-
dels. The compounds that resulted from the phar-
macophore filtering were docked into the active 
site of hLTC4S and those hits bound well at both 
the active sites and matched the pharmacophore 
models were identified as possible dual inhibitors 
for hLTA4H and hLTC4S enzymes.
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Rational drug discovery via “computer-assis-
ted combinatorial method” may also be used to 
develop hybrid drug molecules. Hybrid compoun-
ds are defined as chemical entities with two or 
more structural domains having different biologi-
cal functions and dual activity, indicating that a 
hybrid molecule acts as two distinct pharmacop-
hores [50].

Curcumin (diferuloylmethane), the active ing-
redient in turmeric (Curcuma longa), with the aid 
of molecular docking techniques, has been shown 
to bind by multiple forces directly to numerous 
signaling molecules, such as inflammatory mo-
lecules, cell survival proteins, protein kinases, 
protein reductases, histone acetyltransferase, his-
tone deacetylase, glyoxalase I, xanthine oxidase, 
proteasome, HIV1 integrase, HIV1 protease, sar-
co (endo) plasmic reticulum Ca(2+) ATPase, DNA 
methyltransferases 1, FtsZ protofilaments, carrier 
proteins, and metal ions. Curcumin can also bind 
directly to DNA and RNA [51].

Huang and his colleagues [52], with a view to 
better integrate three dimensional protein struc-
tural information in cancer systems biology, have 
constructed a Human Cancer Pathway Protein In-
teraction Network (HCPIN) by analysing several 
classical cancer-associated signaling pathways 
and their physical protein-protein interactions. 
Many well-known cancer-associated proteins play 
central roles as “hubs” or “bottlenecks” in the HC-
PIN. At least half of HCPIN proteins are either 
directly associated with or interact with multiple 
signaling pathways. Recently, a large number of bi-
ological pathway and network databases have been 
developed to capture the expanding knowledge of 
protein-protein interactions (e.g. Human Prote-
in Reference Database (HPRD) [53] and Database 
of Interacting Proteins [54] and of metabolic and/
or signaling pathways (e.g. KEGG [55], Reactome 
[56], Signal Transduction Knowledge Environment 
(STKE), and BioCarta). A few databases are speci-
fically focused on cancer-associated signaling pat-
hways, such as The Cancer Cell Map and the Rel/
NF-κB Signal Transduction Pathway. Pathguide [57] 
provides an overview of more than 200 Web-based 
biological pathway and network databases. 

Fragment-based approach to multi-target drug dis-
covery

Fragment-based approaches combine multip-
le structural fragments that bind to each individu-
al target to design compounds that bind to mul-
tiple targets, which have been introduced as tools 
for the design of multi-target agents (Figure 1b) 

[58]. In one approach, the structure-activity rela-
tionships against individual targets are analyzed 
to find molecular fragments and essential binding 
features which are either combined or incorpora-
ted into active agents against selected multiple 
targets. In another approach, molecular fragment 
libraries are created to find the fragments with 
certain levels of activity against selected multiple 
targets, and the identified fragments are further 
optimized into more potent, bigger-sized mul-
ti-target active agents. A fragment-based appro-
ach to multi-target drug discovery could lead to 
a new generation of compounds with improved 
physicochemical and pharmacokinetic properties 
[59].

Optimizing fragments with weak multiple ac-
tivities into potent multi-target, drug-like agents 
can be more easily achieved for targets sharing a 
conserved binding site [59]. As binding sites be-
come more dissimilar, it is increasingly difficult 
to improve and adequately balance the high bin-
ding affinities needed to achieve acceptable in vivo 
efficacy and safety. One way to reduce this diffi-
culty is to explore synergistic targets, such that 
multi-target agents with modest activity at one 
or more of the relevant targets may still produce 
similar or better in vivo effects compared with hig-
her affinity, target-selective compounds [41]. 

In another approach, the incorporation of 
multi-target or species variations of binding-site 
features into the multi-target dependent molecu-
lar descriptors [60] or species-dependent molecu-
lar descriptors has driven to the development of 
multi-target QSAR models [48] with successful 
binding of the drug to multiple targets. 

The attack approach in multi-target drug design 

Another useful strategy in multi-target drug 
design is the attack approach with examination 
of the effects of drugs in the context of cellular 
networks [61]. In this model, a drug-induced inhi-
bition of a single target means that the interacti-
ons around a given target are eliminated, where-
as partial inhibition can be modeled as a partial 
knockout of the interactions of the target. Several 
classes of drugs, such as anticancer drugs, are de-
signed to destroy the normal function of cellular 
networks. Networks have a number of vulnerab-
le points and, therefore, can be attacked in many 
ways. 

Drug design and discovery

Drug discovery and development is an in-
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tense, lengthy and an interdisciplinary endeavor. 
Drug design, sometimes referred to as rational 
drug design or more simply rational design, is 
the inventive process of finding new medicati-
ons based on the knowledge of a biological target 
[62]. 

Three are the basic questions that should be 
answered, concerning the many disciplines rela-
ted to the drug design and discovery process: (1) 
what is the state-of-the-art in drug discovery to-
day?; (2) what are the latest tools used in the drug 
discovery process; and (3) where is drug discovery 
going in the new millennium? Drug discovery is 
mostly portrayed as a linear, consecutive process 

that starts with target and lead discovery, followed 
by lead optimization (Figure 3) and pre-clinical in 
vitro and in vivo studies (Figure 4) to determine if 
such compounds satisfy a number of pre-set cri-
teria for initiating clinical development (detailed 
in part II). 

Despite remarkable advances in technology 
and understanding of biological systems (prog-
ress in genomic, proteomic and high-throughput 
screening methods, the rational drug design, and 
the massive drug-development efforts), drug dis-
covery is still a lengthy task with the number of 
novel, single-target drugs to have fallen much 
behind expectations during the past decade [62], 
“expensive, difficult, and inefficient process” with 
low rate of new therapeutic discovery [3,63]. Cur-
rently, the research and development cost of each 
new molecular entity (NME) is approximately 1.8 
billion US$ [64]. 

Traditionally, drugs were discovered by sy-
nthesizing compounds in a time-consuming 
multi-step processes against a battery of in vivo 
biological screens and further investigating the 
promising candidates for their pharmacokinetic 
properties, metabolism and potential toxicity. 
Such a development process has resulted in high 
attrition rates with failures attributed to poor 
pharmacokinetics (39%), lack of efficacy (30%), 
animal toxicity (11%), adverse effects in humans 
(10%) and various commercial and miscellaneous 
factors. Today, the process of drug discovery has 
been revolutionized with the advent of genomics, 
proteomics, bioinformatics and efficient techno-
logies, like combinatorial chemistry, HTS, virtual 
screening, de novo design, in vitro, in silico ADMET 
screening and structure-based drug design [65]. 

Rational drug discovery

In contrast to traditional methods of drug 
discovery, which rely on trial-and-error testing of 
chemical substances on cultured cells or animals, 
and matching the apparent effects to treatments, 
rational drug design begins with a hypothesis that 
modulation of a specific biological target may 
have therapeutic value. In order for a biomolecule 
to be selected as a drug target, two essential pie-
ces of information are required. The first is evi-
dence that modulation of the target will have the-
rapeutic value. This knowledge may come from, 
for example, disease linkage studies that show an 
association between mutations in the biological 
target and certain disease states. The second is 
that the target is “druggable”. This means that it 
is capable of binding to a small molecule and that 

Figure 3. Imatinib lead optimization from a 2-phe-
nylaminopyrimidine backbone. (A)  introduction of a 
3’pyridyl group (red) at the 3’- position of the pyrimidine 
improved activity in cellular assays. (B) Activity against 
tyrosine kinases enhanced by addition of a benzam-
ide group (red) to the phenyl ring. (C) Attachment of 
a flag-methyl group (red) ortho to the diaminophenyl 
ring strongly reduced activity against protein kinase C. 
(D) Addition of an N-methylpiperazine (red) increased 
water-solubility and oral bioavailability. Adapted from 
Deininger et al (2005) [89].



773

JBUON 2016; 21(4): 773

its activity can be modulated by the small molecu-
le. Once a suitable target has been identified, the 
target is normally cloned and expressed. The exp-
ressed target is then used to establish a screening 
assay. In addition, the three-dimensional structu-
re of the target may be determined. The search for 
small molecules that bind to the target is begun 
by screening libraries of potential drug compoun-
ds. This may be done by using the screening assay 
(a “wet screen”). In addition, if the structure of the 
target is available, a virtual screen of candidate 
drugs may be performed. Ideally the candidate 
drug compounds should be “drug-like”, that is 
they should possess properties that are predicted 
to lead to oral bioavailability, adequate chemical 
and metabolic stability, and minimal toxic effects. 

Several methods are available to estimate 
druglikeness such as Lipinski’s Rule of Five and 
a range of scoring methods such as Lipophilic ef-
ficiency. The prediction of drug metabolism has 
also been proposed in the scientific literature, 
and a recent example is SPORCalc concerning li-
gand-based drug design (discussed later) [66]. Due 
to the complexity of the drug design process, two 
terms of interest are still serendipity and boun-
ded rationality. Those challenges are caused by 
the large chemical space describing potential new 
drugs without side-effects.

The drug is most commonly an organic small 
molecule that activates or inhibits the function of 
a biomolecule such as a protein, which in turn re-
sults in a therapeutic benefit to the patient. In the 
most basic sense, drug design involves the design 
of small molecules that are complementary in 
shape and charge to the biomolecular target with 
which they interact and therefore will bind to it. 

Drug design, frequently but not necessarily, 
relies on computer modeling techniques [67]. This 
type of modeling is often referred to as compu-

ter-aided drug design. Finally, drug design that 
relies on the knowledge of the three-dimensional 
structure of the biomolecular target is known as 
structure-based drug design. What is really meant 
by drug design is ligand design (i.e., design of a 
small molecule that will bind tightly to its target) 
[68]. Although modeling techniques for predicti-
on of binding affinity are reasonably successful, 
there are many other properties, such as bioava-
ilability, metabolic half-life, lack of side effects, 
etc., that must first be optimized before a ligand 
can become a safe and efficacious drug. These ot-
her characteristics are often difficult to optimize 
using rational drug design techniques. 

Drug targets

Many diseases can be linked to a human pro-
tein, referred to as the target. Typically, a drug 
target is a key molecule involved in a particular 
metabolic or signaling pathway that is specific to 
a disease condition or pathology or to the infe-
ctivity or survival of a microbial pathogen [69]. 
Some approaches attempt to inhibit the functio-
ning of the pathway in the diseased state by ca-
using a key molecule to stop functioning. Drugs 
may be designed that can bind to the active region 
and inhibit this key molecule. Another approach 
may be to enhance the normal pathway by promo-
ting specific molecules in the normal pathways 
that may have been affected in the diseased state. 
In addition, these drugs should also be designed 
so as not to affect any other important “off-target” 
molecules or anti-targets that may be similar in 
appearance to the target molecule, since drug in-
teractions with off-target molecules may lead to 
undesirable side effects. 

The definition of “target” itself is something 
argued within the pharmaceutical industry. Gene-

Figure 4. Computer aided drug design (CADD) and lead optimization.
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rally, the “target” is the naturally existing cellular 
or molecular structure involved in the pathology of 
interest that the drug-in-development is meant to 
act on. However, the distinction between a “new” 
and “established” target can be made without a full 
understanding of just what a “target” is. This dis-
tinction is typically made by pharmaceutical com-
panies engaged in discovery and development of 
therapeutics. In an estimate from 2011, 435 human 
genome products were identified as therapeutic 
drug targets of FDA-approved drugs [70]. 

“Established targets” are those for which there 
is a good scientific understanding, supported by a 
lengthy publication history, of both how the target 
functions in normal physiology and how it is invol-
ved in human pathology. This does not imply that 
the mechanism of action of drugs that are thought 
to act through a particular established target is ful-
ly understood. Rather, “established” relates directly 
to the amount of background information availab-
le on a target, in particular functional information. 
The more such information is available, the less in-
vestment is (generally) required to develop a the-
rapeutic directed against the target. The process 
of gathering such functional information is called 
“target validation” in pharmaceutical industry par-
lance. Established targets also include those that 
the pharmaceutical industry has had experience 
mounting drug discovery campaigns against in the 
past; such a history provides information on the 
chemical feasibility of developing a small molecu-
lar therapeutic against the target and can provide 
licensing opportunities and freedom-to-operate in-
dicators with respect to small-molecule therapeu-
tic candidates.

In general, “new targets” are all those targets 
that are not “established targets”, but which have 
been or are the subject of drug discovery campaig-
ns. These typically include newly discovered pro-
teins, or proteins whose function has now become 
clear as a result of basic scientific research.

During the recent 10 years it was observed an 
increase in the number of targets, collected from 
the Drugbank database in 2011and associated with 
new molecular entities (NMEs), giving rise to 
drug-target pairs [71,72]. Moreover, an increase in 
the average target number of blockbuster drugs is 
also documented. This indicates that multi-target 
drug discovery is indeed a status over the past de-
cade and a possible trend in the future, although 
many single-target drugs are still used today.

Cellular networks

Cellular networks offer a lot of possibilities 

to point out their key elements as potential drug 
targets. As an example of these possibilities, sig-
naling networks have inter-digitized pathways 
and multiple layers of cross-talks [73]. Cellular 
networks, contain hubs, i.e. elements, which have 
a large number of neighbors. These networks can 
be dissected to overlapping modules, which form 
hierarchical communities [74-76]. Also, Ye et al. 
[77] studied the drug function based on similarity 
of pathway fingerprint. According to Ye et al. dru-
gs sharing similar therapeutic function may not 
bind to the same group of targets. However, their 
targets may be involved in similar pathway profi-
les which are associated with certain pathological 
process. Pathway fingerprint was introduced to 
indicate the profile of significant pathways being 
influenced by the targets of drugs. This method 
may be useful to further study on the potential 
function of known drugs, or the unknown functi-
on of new drugs.

Target–target and drug–drug networks 

Two networks, namely, the target–target and 
drug–drug networks may be visualized using 
network analysis tools [3,78]. The target–target 
and drug–drug networks were to make a realistic 
visualization of information and directly deter-
mine the connections between targets and drugs, 
thereby providing important information on the 
current status of drug discovery. 

Target–target networks 

In target–target networks, the interacting 
molecules (drugs) are considered as the elements, 
and their interactions form the weighted links of 
the respective structural network. The targets of 
the anticancer drugs have been effectively sepa-
rated to some extent. Targets for cancer treatment 
were relatively more scattered than those for ot-
her diseases, indicating the complex mechanism 
involved in cancer development and the diverse 
methods for cancer chemotherapy [78]. From tar-
get-target network visualization it is deduced that 
most of the targets are bound to others by links 
(in many cases with more than one multi-drug), 
confirming the importance of multi-target drugs 
in many diseases including cancer. The between 
target links, may also be thought as representa-
tions of signaling or metabolic processes for the 
encountered disease [74]. Links usually have a we-
ight, which characterizes their strength (affinity 
or propensity). Thicker lines indicate that more 
drugs affect the connecting targets. A typical agg-
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regation is that of tyrosine kinases. In fact, several 
anti-cancer drugs target MCSF1R (macrophage 
colony-stimulating factor 1 receptor), MSCGFR 
(mast/stem cell growth factor receptor), POTP-
KABL1 (proto-oncogene tyrosine-protein kinase 
ABL1) and VEGFR2, among others. Special signa-
ling elements, such as the PI-3-kinase, the Akt-ki-
nase, or the insulin-receptor substrate family 
have been called “critical nodes”. These “critical 
nodes” have multiple isoforms, and are important 
junctions of signaling pathways [79]. Both the 
bridge-elements of signaling networks providing 
cross-talks and the “critical nodes” can be impor-
tant targets of network-based drug development. 
Domain-specific targets offer a larger flexibility 
and may actually reflect a family of multiple tar-
gets due to frequent “re-use” of domain-variants 
as a result of modular evolution [80,81]. 

Drug-drug networks

Identifying drug-drug interactions (DDIs) is 
a critical process in drug administration and drug 
development. A novel approach that integrates 
text mining and automated reasoning to derive 
DDIs has been presented by Tari et al. [82]. This 
approach can uncover potential DDIs with scien-
tific evidences explaining the mechanism of the 
interactions. Drug interaction information has 
been extensively compiled into large databases. 
For this reason, network analysis tools can give 
information and directly determine the connecti-
ons between drugs. Hu et al. [83] have construc-
ted drug-drug interaction networks in which the 
interacting drugs were treated as nodes and were 
connected with links that represent interactions. 
They determined the number of interactions of 
each drug in the network and prepared histog-
rams to show the frequency distribution. 

In drug-drug network it is obvious that an-
ticancer drugs cluster relatively closer compared 
with other drugs. For example, DNA, DNA synt-
hesis-related enzymes, different types of tyrosine 
kinases, histone deacetylase inhibitors, and prote-
asome inhibitors, among others, are all anti-can-
cer targets, which lead to the development of 
anti-drugs in different clusters. In particular, ar-
ranon, dacogen, eloxatin, and vidaza target DNA; 
Tarceva, tykeerb, and iressa target EGFR (epider-
mal growth factor receptor); Sorafenib, sunitinib, 
imatinib, and dasatinib target other tyrosine ki-
nases; vorinostat targets histone deacetylases and 
velcade targets proteasome. 

As previously pointed out, it seems that using 
single-targeted agents to cure these complex dise-

ases is almost impossible. The multiple tyrosine 
kinase inhibitor imatinib induces better antican-
cer effects compared with that of gefitinib, which 
involves a single target [84], further indicating 
that drugs with multiple targets may exhibit a 
better chance of affecting the complex equilibri-
um of whole cellular networks, than drugs that 
act on a single target. 

The major problem is that we cannot defini-
tely pre-determine which targets should be com-
bined to design better anticancer drugs. Combina-
torial therapy as an alternative, applied for deca-
des in clinical practice, is unable to simultaneous-
ly affect all known targets associated with cancer. 
On the other hand, the increased side effect toxi-
city, due to off-target aiming of the drug combi-
nation, is a limiting factor for the combinatorial 
anticancer therapy. Thus, a better solution is to 
combine the targets selectively according to the 
developing knowledge on the mechanism of tu-
mor growth and screen the compounds for ratio-
nal drug discovery. Therefore, rapid development 
about genomics, proteomics, metabonomics, may 
enhance our understanding of the nature of can-
cer, effectively find possible therapeutic targets, 
and generate computer models that will identify 
the correct multi-fitting and further make this no-
vel drug design paradigm successful. 

Drug target networks

Predicting potential drug-target interactions 
from heterogeneous biological data is critical not 
only for better understanding of the various in-
teractions and biological processes, but also for 
the development of novel drugs and the impro-
vement of human-intended medicines [85]. Chen 
and his colleagues have developed a method of 
Network-based Random Walk with Restart on 
the Heterogeneous network (NRWRH) to predict 
potential drug-target interactions on a large sca-
le under the hypothesis that similar drugs often 
target similar target proteins and the framework 
of Random Walk. In comparison with traditional 
supervised or semi-supervised methods, NRWRH 
makes full use of the tool of the network for data 
integration to predict drug-target associations. An 
approach to fill in the existing gap between che-
mical genomics and network pharmacology and 
thus accelerate the drug discovery processes has 
recently appeared in the literature [86].

Yamanishi et al. [87] have investigated the re-
lationship between the chemical space, the phar-
macological space and the topology of drug-target 
interaction networks, and showed that drug-target 
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interactions are more correlated with pharmaco-
logical effect similarity than with chemical struc-
ture similarity. They developed a new method to 
predict unknown drug-target interactions from 
chemical, genomic and pharmacological data on 
a large scale.

Drug-Target Interactome (DTome) provides 
a computational framework to effectively cons-
truct drug target networks by integrating the 
drug-drug interactions, drug-target interactions, 
drug-gene associations and target/gene-protein 
interactions. DTome also provides the network 
analysis illustration using the available network 
analysis software (http://bioinfo.mc.vanderbilt.
edu/DTome/) [88]. In this study, Sun et al. desig-
ned a drug-target interactome to include dru-
gs, targets, and proteins and their interactions. 
The targets included the drug primary targets 
and drug-associated genes with known PK and 
PD evidence. DTome network was designed to 
include three types of nodes and four types of 
relationships. The three types of nodes referred 
to drugs, proteins and genes. The four types of 
relationships included drug-drug interactions, 
drug-target interactions, drug-gene associati-
ons, and target-/gene-protein interactions. For 
drug-drug interactions, the compiled drug pairs 
were based on DrugBank interaction annotation. 
To obtain drug target/gene-protein interactions, 
target/gene’s direct interactors were retrieved 
from human protein-protein interaction (PPI) 
data from the PINA (Protein Interaction Network 
Analysis) database. In the drug-gene interacti-
ons, the connection was defined between a gi-
ven drug and its associated genes based on the 
evidence extracted from PharmGKB (The Phar-
macogenomics Knowledge Base) database (data-
bases reported here will be reviewed in Part II to 
be published in J BUON). 

The DTome tool provides a computational 

workflow to integrate candidate drugs with the-
ir adverse drug interactions, primary targets, and 
associated genes in the context of human PPIs. 
The workflow includes three main steps: (1) da-
taset preparation and database construction (this 
step includes parsing the data from multiple data-
bases and creation of a database); (2) generation of 
user-specified data and network (the user-speci-
fied data include a candidate drug or a list of dru-
gs and four types of interactions. After merging 
the interactions, a DTome network is formed; and 
(3) network analysis and visualization via Cytos-
cape software (http://www.cytoscape.org/). This 
tool is computationally efficient and represents a 
promising strategy to investigate the molecular 
mechanisms of drug actions. Drug efficacy can be 
affected by the complexity of biological networks, 
of which targets are only a part. A user-friendly 
web interface for the DTome tool allows users to 
refine searches.

Conclusion

In this first part, we described the rationale 
behind the need for search of novel inhibitors tar-
geting important cellular molecular pathways or 
cascades, as well as the fundamentals behing the 
design and discovery of targeted agents. In part 
II we’ll describe in detail the methods used in de-
signing and manufacturing novel molecules and 
specifically computer-aided drug design (CADD), 
virtual high throughput Screening (vHTS), Ho-
mology modeling, details of combinational che-
mistry and pharmacophores and we’ll briefly 
dissert on the role of informatics in this exciting 
field of medicinal chemistry.
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