
Purpose: The objective of this study was to identify seed 
pathway cross-talks in non-small cell lung carcinoma (NS-
CLC), and to reveal potential pathological mechanism at 
molecular level systematically.

Methods: Differentially expressed genes (DEGs) between 
NSCLC and normal controls were identified using quan-
tile-adjusted conditional maximum likelihood (QCML) 
method. Subsequently, differential pathways (DPs) enriched 
by DEGs were determined according to the Ingenuity Path-
ways Analysis (IPA) pathways and Fisher’s exact test. A 
discriminating score (DS) was computed for each pair of 
DPs also called as cross-talk, and random forest (RF) al-
gorithm was implemented to investigated hub cross-talks. 
Finally, global cross-talks with repeated times > 5 were cal-
culated by Monte Carlo Cross-Validation (MCCV). By tak-
ing intersections between hub cross-talks and global cross-
talks, we obtained seed cross-talks. 

Results: We obtained 122 DEGs and 5 DPs between NS-
CLC samples and normal controls. Based on DS and RF 
algorithm, 5 hub cross-talks with best area under the curve 
(AUC) were identified, of which Agranulocyte Adhesion and 
Diapedesis, and IL-17A Signaling in Fibroblasts were the best 
with AUC=0.996. After intersected with global cross-talks, we 
gained 2 seed cross-talks (Agranulocyte Adhesion and Dia-
pedesis, Granulocyte Adhesion and Diapedesis and Agranulo-
cyte Adhesion and Diapedesis, Glutathione Redox Reactions I). 

Conclusions: Two seed cross-talks were identified and 
validated by MCCV, which may give insights for revealing 
pathological mechanism and potential biomarkers for tar-
get therapy in NSCLC.
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Lung cancer is the leading cause of cancer 
mortality worldwide, with more than 1.3 million 
deaths each year [1], of which NSCLC accounts 
for approximately 80% [2]. At present, treatment 
of NSCLC is based on histopathological features 
and staging, however, pathologically similar tu-
mors with comparable stage show dramatically 
different response to the same therapy of NSCLC 
[3]. Common features at the molecular level may 
be able to predict such outcome discrepancies 

among patients more reliably. Recent advances in 
microarray technology enable researchers to reca-
pitulate molecular properties of NSCLC at the lev-
el of individual genes [4-6]. For instance, epider-
mal growth factor receptor (EGFR) has emerged 
as the most significant target in the treatment of 
NSCLC [6]. 

However, genes and their protein products do 
not only function individually, but also interact 
with others [7]. Similar genes and their interac-
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tions may display similar functions and partici-
pate in the same biological pathway. Moreover, 
a pathway does not act as independent mecha-
nism, but correlates to other pathways, a situa-
tion referred to as cross-talk [8]. A cross-talk be-
tween two pathways can regulate interactions or 
express the gene overlap among them [9]. Many 
of the cellular signaling pathways are intercon-
nected to maintain homeostasis in normal cells 
[10]. With the development of cancer, the pathway 
cross-talks are deeply affected [11]. Therefore, the 
cross-talk among pathways is a crucial step for 
understanding the pathological mechanisms and 
the synergistic effects in cancers.

The objective of this work was to identify 
seed pathway cross-talks in NSCLC by integrating 
differential pathway analysis with MCCV. First-
ly, we explored DEGs across NSCLC patients and 
normal controls based on QCML. Secondly, DPs 
enriched by DEGs were identified according to the 
IPA pathways and Fisher’s exact test. Thirdly, hub 
cross-talks of DPs were evaluated by combining 
DS with RF classification model. Finally, global 
cross-talks with repeated times >5 were calcu-
lated by MCCV. The intersections between hub 
and global cross-talks were considered to be seed 
cross-talks of pathways in NSCLC. 

Methods 

Data 

In this paper, microarray dataset with accessing 
number E-GEOD-19188 was downloaded from Array-
Express database for NSCLC related studies. E-GE-
OD-19188 was composed of 91 NSCLC samples and 
65 normal samples, and presented on A-AFFY-44 - 
Affymetrix GeneChip Human Genome U133 Plus 2.0 
Platform. By removing duplicated probes and convert-
ing probes into gene symbols, a total of 20544 genes 
were obtained in the data. Subsequently, the data were 
normalized through quantiles based algorithm [12], 
whose goal was to make the distribution of symbol 
intensities for each array in a set of arrays the same. 
We selected genes which had mean higher than the 
0.25×quantile mean across all samples for further ex-
ploitation.

DEGs

To determine whether a gene was differentially ex-
pressed across NSCLC and normal controls, we utilized 
the edgeR package from Bioconductor [13] based on 
QCML method [14]. It dispersed the parameter of the 
negative binomial (NB) distribution and compared its 
performance among different conditions [15]. For gene 
g in sample i, its NB model was distributed as follows:

where Ti was the total number of reads, was φg 
the dispersion, Sgj was the relative abundance of gene 
g in the experimental group j to which sample i be-
longed; φg represents the coefficient of variation of 
biological variation between the samples; the mean of 
NB parameterization was µgi = TiSgj and variance was 
µgi(1+µgiφg). For differential expression analysis, the 
parameters of interest are Sgj. The P was corrected by 
Benjamini-Hochberg (BH) procedure for multiple test-
ing corrections [16]. Only genes that met to the thresh-
olds of false discovery rate (FDR) < 0.01 and |logFold-
Change| > 2 were considered as DEGs between NSCLC 
and normal controls.

DPs 

Pathway enrichment analysis for DEGs was per-
formed on the basis of 589 biological pathways derived 
from the IPA tool [17]. The first step was mapping DEGs 
into biological pathways to make them more confident, 
and we obtained the pathways responsible for coordi-
nating DEGs activities. Next, Fisher’s exact test was ap-
plied between DEGs and genes of IPA pathways, which 
is a statistical significance test used in the analysis of 
contingency Tables [18]. Hence we obtained pathways 
enriched with FDR < 0.01 corrected by BH test [16], and 
denoted them as DPs in NSCLC with respect to normal 
controls. The P was calculated as follows:

of which B was the number of total genes, A was 
the amount of genes in one gene set, k was the gene 
number of one gene set in the gene lists, k = a-1; b was 
the gene number of one gene list in the total genes.

DP cross-talks 
In order to explore the cross-talk of two DPs, we 

implemented the DS, which indicates the relationships 
between pairs of pathways, with a larger value indi-
cating relatively higher difference of activity between 
pathways [11]. The DS is mainly dependent on the com-
parison of gene expression levels between each pair of 
DPs. For any pair of DPs (u, v) the following formula 
was used:

Where Mu and Du represent mean and standard de-
viation of expression levels of genes in a pathway u; 
Mv and Dv represent mean and standard deviation of 
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expression levels of genes in a pathway v. 

Hub cross-talks

A RF classification model was employed to eval-
uate the performance of DP cross-talks across NSCLC 
and normal controls [19]. The algorithm included three 
parts: drawing Ntree bootstrap samples from the data 
was the first part (Ntree = 500). Next, a regression tree 
was grown from each of the bootstrap samples. And 
last, new data were predicted by aggregating the pre-
dictions of the Ntree trees. For the purpose of accessing 
the classification results, the area under the receiver op-
erating characteristics curve (AUC) was engaged by 10-
fold cross-validation method, due to its consideration 
of the nature of the incorrect predictions than accuracy 
[20]. Classification was applied on DP cross-talks based 
on DS for each sample, and we defined top 5 cross-talks 
in descending order of AUC as hub cross-talks.

Global cross-talks 
In this paper, to evaluate the activities and func-

tions of hub cross-talks in NSCLC samples, the MCCV 
method was adopted [21]. The total n samples (X) were 
randomly split into two sets, the first part (calibration 
set), denoted as Sc, contained nc samples for fitting the 
models. The other part (validation set), denoted as Sv, 
included nv samples for validating the model:

of which E represents the squared prediction error, 
R stands for the procedure repeated times (R=50). The-
oretically, the fewer samples used in model calibration, 
the more repeat times were needed. For each bootstrap, 
the DEGs, DPs, cross-talks and their DS values were 
carried out. The DP cross-talks with repeated times>5 
were statistically counted, and denoted as global cross-
talks. The more repeated times might imply the more 
significant of this cross-talk was. 

Results

DEGs 
After eliminating genes of lower than the 0.25 

∗ quantile mean across all samples, we obtained 
15408 genes in the data and detected DEGs be-
tween NSCLC patients and normal controls based 
on them. Using QCML method, a total of 122 
DEGs were identified under the thresholds of FDR 
< 0.01 and |logFoldChange| > 2. 

DPs

By taking intersections among DEGs and 
IPA pathways, we gained common genes and 
DEGs enriched pathways. For these pathways, 
we used Fisher’s exact test, and obtained 5 DPs 
of FDR < 0.01 in total, as shown in Table 1. The 
DPs were Agranulocyte Adhesion and Diapedesis 
(FDR=4.330E-04), IL-17A Signaling in Fibroblasts 
(FDR=1.108E-03), Granulocyte Adhesion and Dia-
pedesis (FDR=2.232E-03), Glutathione Redox Re-
actions I (FDR=4.341E-03) and Differential Regu-
lation of Cytokine Production in Macrophages and 
T Helper Cells by IL-17A and IL-17F (FDR=4.865 
E-03).

Hub cross-talks

In the current study, a DS was computed by 
comparing the gene expression levels of each 
cross-talk formed by DPs, and then RF classifica-
tion was applied on cross-talks utilizing DS for 
each sample. Additionally, the 5 DPs composed 10 
cross-talks at random. When setting the criterion 
to top 5 of AUC in descending order, a total of 5 
hub cross-talks were identified (Table 2). The best 
one was Agranulocyte Adhesion and Diapedesis, 
IL-17A Signaling in Fibroblasts with AUC=0.996, 
indicating that this cross-talk had a good perfor-
mance in classifying NSCLC samples and normal 
samples. Interestingly, we found 4 of 5 cross-
talks were comprised of Agranulocyte Adhesion 

Table 1. Differential pathways with FDR < 0.01

Differential pathways FDR Number of genes in 
pathway

Number of 
DEGs

Agranulocyte Adhesion and Diapedesis 4.330E-04 173 6

IL-17A Signaling in Fibroblasts 1.108E-03 35 3

Granulocyte Adhesion and Diapedesis 2.232E-03 163 5

Glutathione Redox Reactions I 4.341E-03 17 2

Differential Regulation of Cytokine Production in macrophages 
and T helper cells by IL-17A and IL17F 

4.865 E-03 18 2

DEGs: differentially expressed genes, FDR: false discovery rate
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and Diapedesis, which suggested that this DP 
played significant role in the NSCLC progression. 
There also were two cross-talks with AUC >0.980 
(Agranulocyte Adhesion and Diapedesis, Granu-
locyte Adhesion and Diapedesis) with AUC=0.986 
and Agranulocyte Adhesion and Diapedesis, Glu-
tathione Redox Reactions I with AUC = 0.981.

Global cross-talks

We divided total samples (N=156) into two 
sets according to the ratio of 3:2, and kept the 
94 to build a calibration set (29 normal samples 
and 55 NSCLC samples) and 62 to construct a 
validation set (34 normal samples and 36 NSCLC 
samples). The MCCV process was repeated mul-
tiple times (50 bootstraps), generating (at ran-
dom) new training and test partitions each time. 
Figure 1 displays the 22 cross-talks with repeat-
ed times > 5, also called as global cross-talks. 
We discovered that the cross-talk Agranulocyte 
Adhesion and Diapedesis, Inhibition of Matrix 
Metalloproteases and Granulocyte Adhesion and 
Diapedesis, Inhibition of Matrix Metallopro-
teases possessed the most repeated times of 22; 
the next were IL-17A Signaling in Fibroblasts, 
Inhibition of Matrix Metalloproteases, Agranu-
locyte Adhesion and Diapedesis, HIF1 Signaling 
and Granulocyte Adhesion and Diapedesis, HIF1 
Signaling, that had 17 repeated times. What was 
more, among the global cross-talks, two also 
presented in hub cross-talks, and were Agran-
ulocyte Adhesion and Diapedesis, Granulocyte 
Adhesion and Diapedesis and Agranulocyte Ad-
hesion and Diapedesis, Glutathione Redox Re-
actions I. We might infer that the two common 
cross-talks were more significant than others in 
the progression of NSCLC, and denoted them as 
seed cross-talks.

Discussion 

The presence and amount of different path-
ways influences have not been completely studied 
although this scenario is intuitive; most impor-
tantly, the precise available methodology able to 
quantify the amount of such cross-talk for pairs of 
pathway is rare [22,23]. In this work, we applied 
a method by integrating DEGs, DPs, DS, RF clas-
sification with MCCV. It has been demonstrated 
that the method is even more interesting from a 
biological point of view, and thus we employed to 
identify seed cross-talks in NSCLC. This finding 
could gain an insight into revealing the patholog-
ical mechanism of NSCLC [11]. 

We obtained 2 seed cross-talks of pathways 
in NSCLC: “Agranulocyte Adhesion and Diapedes-
is, Granulocyte Adhesion and Diapedesis” and 
“Agranulocyte Adhesion and Diapedesis, Glu-
tathione Redox Reactions I”. Both Agranulocyte 
and Granulocyte belong to haemocyte groups 
and are characterized by the presence of granules 
in their cytoplasm [24]. In the report by Cui and 
Willingham [25], separation of white blood cells 
into granulocyte and agranulocyte types had close 
relationship with cancer-killing-activity (CKA) in 
their white blood cells. In addition, adhesion is a 
fundamental feature of multicellular organisms 
inhibiting growth of tumor cells [26] . Specialized 
leukocytes (agranulocytes and granulocytes) ad-
here to and pass through the endothelium of the 
blood vessels and the underlying matrix during 
inflammation [27]. Diapedesis is a process that ad-
hering leukocytes crawl to an intercellular junc-
tion of the endothelium and then transmigrate 
to or even through the intercellular matrix [28]. 
Zhang et al. had revealed that agranulocyte/gran-
ulocyte adhesion and diapedesis pathways likely 
contribute to immunopathogenesis, including mi-

Table 2. Hub cross-talks with AUC value for random forest classification

ID Cross-talks AUC

1
a: Agranulocyte Adhesion and Diapedesis 0.996

b: IL-17A Signaling in Fibroblasts

2
a: Agranulocyte Adhesion and Diapedesis 0.986

b: Granulocyte Adhesion and Diapedesis

3
a: Agranulocyte Adhesion and Diapedesis 0.981

b: Glutathione Redox Reactions I

4
a: Agranulocyte Adhesion and Diapedesis 0.975

b: Differential Regulation of Cytokine Production in macrophages and T helper 
cells by IL-17A and IL-17F

5
a: IL-17A Signaling in Fibroblasts 0.974

b: Granulocyte Adhesion and Diapedesis
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Figure 1. Heatmap for global cross-talks with repeated times > 5.

gration of leukocytes and tumor pathology [29]. 
Therefore we inferred that the cross-talk (Agranu-
locyte Adhesion and Diapedesis, Granulocyte Ad-
hesion and Diapedesis) was tightly related to can-
cer. Meanwhile, this is the first time to propose 
their correlation with NSCLC.

Glutathione Redox Reactions I was another 

significant DP between NSCLC and normal con-
trols. Glutathione plays an important role in a 
multitude of cellular processes, including cell dif-
ferentiation, proliferation and apoptosis, and dis-
turbances in glutathione homeostasis are involved 
in the etiology and progression of many human 
diseases, including cancer [30]. Glutathione Redox 
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Reactions, the major determinant of the cellular 
redox status, represented a promising therapeutic 
strategy for overcoming cancer cell progression 
and chemoresistance [31]. It had been suggested 
that the glutathione redox status decreases in the 
blood of tumor cells [32], and might interact with 
agranulocyte adhesion and diapedesis in the pro-
gression of NSCLC. 

In conclusion, we have identified 2 seed cross-
talks and validated them by MCCV, which may give 
insights for revealing pathological mechanism and 
potential biomarkers for target therapy in NSCLC.
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