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Purpose: To identify differential pathways between papil-
lary thyroid carcinoma (PTC) patients and normal controls 
utilizing a novel method which combined pathway with 
co-expression network. 

Methods: The proposed method included three steps. In 
the first step, we conducted pretreatments for background 
pathways and gained representative pathways in PTC. 
Subsequently, a co-expression network for representative 
pathways was constructed using empirical Bayes (EB) ap-
proach to assign a weight value for each pathway. Finally, 
random model was extracted to set the thresholds of identi-
fying differential pathways. 

Results: We obtained 1267 representative pathways and 
their weight values based on the co-expressed pathway net-
work, and then by meeting the criterion (Weight > 0.0296), 

87 differential pathways in total across PTC patients and 
normal controls were identified. The top three ranked differ-
ential pathways were CREB phosphorylation, attachment 
of GPI anchor to urokinase plasminogen activator receptor 
(uPAR) and loss of function of SMAD2/3 in cancer. 

Conclusions: In conclusion, we successfully identified dif-
ferential pathways (such as CREB phosphorylation, attach-
ment of GPI anchor to uPAR and post-translational mod-
ification: synthesis of GPI-anchored proteins) for PTC us-
ing the proposed pathway co-expression method, and these 
pathways might be potential biomarkers for target therapy 
and detection of PTC.

Key words: differential pathway, empirical Bayes co-ex-
pression, genes, papillary thyroid carcinoma
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PTC is the most common thyroid malignancy 
[1] Current treatments involve surgery, radioac-
tive iodine treatment, and thyroid hormone sup-
pression [2], and its current 5-year survival are 
>95% although the incidence is increasing, which 
indicates that the overall prognosis is impressive-
ly favorable [3]. However, a number of PTC pa-
tients are not readily identified by histopathologic 
staging and may have aggressive disease charac-
terized by local recurrence and/or distant metas-
tasis [4]. Therefore, early detection and diagnosis 
of PTC is undoubtely needed.

Currently, several molecular markers have 

been identified as biological indicators for PTC. 
For instance, a high frequency of activating so-
matic alterations of genes encoding effectors in 
the mitogen-activated protein kinase (MAPK) sig-
naling pathway of PTC were identified [5], which 
included point mutations of B-Raf proto-onco-
gene and serine threonine kinase (BRAF) [6,7]. 
Mutations in members of the phosphoinositide 
3-kinase (PI3K) pathway, such as phosphatase 
and tensin homolog (PTEN), phosphatidylinosi-
tol-4,5-bisphosphate 3- kinase, catalytic subunit 
alpha (PIK3CA), and v-akt murine thymoma vi-
ral oncogene homolog 1 (AKT1), have also been 
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reported at low frequencies in PTC [8]. However, 
the number of these biomarkers is few and there 
exists a severe need for understanding PTC mech-
anism and customized anticancer therapies, the 
identification of differential pathways may help to 
solve this challenge to some extent. 

Pathway analysis has become the first choice 
for gaining insight into the underlying biology 
of genes and proteins, as it reduces complexity 
and increases the explanatory power [9]. Exist-
ing pathway analysis techniques are mainly fo-
cused on only one of static or dynamic method. 
For example, the Database for Annotation, Visu-
alization and Integrated Discovery (DAVID) [10] 
and neaGUI package [11] are static, such as a giv-
en Reactome pathway database, which may not 
reflect the specific conditioned pathway under 
study. Hence more and more researchers focused 
on pathways based on dynamic networks which 
consider network variations but produce many 
false-positive results resulting from various ef-
fects on the expression of their interacting genes 
[12]. Meanwhile, identifying pathway changes or 
differential pathways, will create an informative 
description of the biology that is occurring in a 
particular dataset, making it possible to generate 
new hypotheses and to identify genetic signatures 
that provide insight into understanding, diagnos-
ing and treating disease [13,14]. Therefore, we 
proposed a novel method by combining static and 
dynamic methods together to identify differential 
pathways between PTC and normal controls.

The objective of this article was to propose a 
novel method of combined pathway identification 
with co-expression network, and then apply the 
method to detect differential pathways in PTC. To 
achieve this goal, firstly, representative pathways 
for PTC were obtained based on the background 
pathways. Subsequently, we constructed a co-ex-
pression network for representative pathways us-
ing EB approach to assign a weight value for each 
pathway. Finally, a random model was extracted to 
set the thresholds of identifying differential path-
ways. To validate the feasibility of the proposed 
method, we compared it with DAVID pathways 
enrichment analysis based on differentially ex-
pressed genes (DEGs). The differential pathways 
might be potential biomarkers of target therapy 
and might give an insight to future study of PTC.

Methods

Gene data recruitment

Two gene expression profiles of PTC (E-GEOD-33630 

and E-GEOD-60542) were recruited from the online 
public free ArrayExpress database. E-GEOD-33630 com-
prised 49 PTC samples and 45 normal controls and pre-
sented on A-AFFY-44- Affymetrix GeneChip Human Ge-
nome U133 Plus 2.0 [HG-U133_Plus_2] Platform, while 
for E-GEOD-60542 there were a total of 63 samples (33 
PTC samples and 30 normal controls), and the platform 
of this profile was the same as E-GEOD-33630. There-
fore, in this study 82 PTC samples and 75 normal con-
trols, and in total 167 samples were involved in the two 
datasets.

Data preprocessing

To control the qualities of datasets on probe-lev-
el, standard pre-treatments were performed for them. 
Firstly, background correction was carried out by Ro-
bust Multi-array Average (RMA) algorithm to elim-
inate the influence of nonspecific hybridization [15]; 
subsequently, normalization was conducted according 
to quantiles-based algorithm to make the distribution 
of probe intensities for each array in a set of arrays the 
same [16]; next, we applied Micro Array Suite (MAS) 
algorithm to revise perfect match and mismatch val-
ue [17]; finally, medianpolish method was selected to 
summarize expression values [15]. Expression struc-
tures were converted from the preprocessed data in 
AffyBatch formats, screened by feature filter method 
to discard duplicated genes based on genefilter pack-
age [18], and mapped each probe ID to gene symbol 
through annotate package [19]. A total of 20389 genes 
were obtained for E-GEOD-33630 and E-GEOD-60542, 
respectively.

Data merging 

To remove the batch effects caused by the use of 
different experimentation plans and methodologies, 
we employed GENENORM method in inSilicoMerging 
package [20] to merge the two preprocessed gene ex-
pression profiles into a single group. In this method, for 
each gene expression value xij in each study separately, 
all values were modified by subtracting the mean i of 
the gene in that dataset divided by its standard devia-
tion σi. Measured gene expression values ( ) of gene 
i in sample j of the batch k could be expressed as:

The merged dataset included 20389 genes and was 
used for further exploitation. 

Pathway data

Biological pathways for human beings were down-
loaded from the Reactome pathway database (http://
www.reactome.org), and we gained 1675 pathways in 
total. To make pathways more confident and stable, we 
discarded pathways with gene number ≤ 2, and a total 

http://www.reactome.org/
http://www.reactome.org/
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of 1639 pathways were obtained which were denoted 
as background pathways in the subsequent study. Re-
actome is a manually curated open resource for human 
pathway data described in molecular terms and pro-
vides infrastructure for computation across the biolog-
ic reaction network [21]. 

Differential pathways identification

In this paper, to identify differential pathways be-
tween PTC patients and normal controls, we proposed a 
method, which combined random model to screen dif-
ferential pathways in conjunction with pathway co-ex-
pressed network to assign a weight for each represen-
tative pathway. 

Pathway co-expression network

Before constructing pathway co-expression net-
work, we should excavate genes enriched in path-
ways. To achieve this, firstly, we calculated mean gene 
number (M) for 1639 background pathways; M = total 
gene number for pathways (73099)/pathway number 
(1639)=44.6 and here we took M=44 for convenience. 
Secondly, for each pathway, its gene amount was denot-
ed by A, and the number of its intersection with gene 
expression data was denoted by B. We selected these 
that satisfied with B > 5 and B/A > 0.8 as the representa-
tive pathways, and 1267 representative pathways were 
gained. Thirdly, EB approach [22] was implemented to 
conduct co-expressed network for genes of each rep-
resentative pathway, and the number of possible con-
structed gene-gene interactions in one representative 
pathway was represented by C which equaled to

In EB method, expression values of pathway genes 
were displayed as an m-by-n matrix, where m was the 
number of genes under any representative pathway 
and n was the total number of representative path-
ways. Subsequently, these values were normalized and 
obtained matrix X, of which the members took values 
in 1-K, where K was the total number of conditions. 
Based on X, we calculated intra-group correlations for 
all gene pairs, hence the resulting Y matrix of correla-
tions was l-by-K. Mclust algorithm was employed to 
initialize the hyper parameters to find the component 
normal mixture model that best fitted the correlations 
of Y after transformation. Finally, those who met a soft 
threshold of false discovery rate (FDR) ≤ 0.05 were se-
lected to construct the pathway co-expression network. 
The amount of interactions in one pathway network 
was marked as D, and D/C was defined as the weight for 
this pathway.

Differential pathways

To identify the differential pathways between PTC 
patients and normal controls based on representative 

pathways, a random model which consisted of M genes 
was constructed. M genes were randomly extracted 
from the gene expression data, and then EB co-ex-
pression analysis was performed to determine weight. 
Capturing 10000 times at random, 10000 weights were 
obtained, and we ranked them in descending order, and 
set the weight of the 100th pathway (Weight=0.0296) 
to be the thresholding (FDR<0.01), while representative 
pathways with weight >0.0296 were considered to be 
differential pathways.

DEGs detection

To identify DEGs between PTC and normal con-
trols based on gene expression profiles, Linear Models 
for Microarray Data (LIMMA) package in R was applied 
[24]. Genes which met the thresholds of p <0.01 and 
|log2FoldChange| > 3 were identified as DEGs.

Reactome pathway enrichment analysis

Reactome pathway enrichment analysis for DEGs 
was performed using the online tool DAVID which pro-
vided exploratory visualization tools that promoted 
discovery through functional classification, biochemi-
cal pathway maps, and conserved protein domain archi-
tectures [25]. Expression analysis systematic explored 
(EASE) test implemented in DAVID was used to calcu-
late p value of each pathway. EASE is an easy-to-use, 
customizable tool that allows investigators to system-
atically mine the mass of functional information asso-
ciated with data generated by microarray [26]. If one 
pathway was under the threshold (EASE=0.05, count 
>2), we considered it to be differential pathway in PTC. 

Statistics

The statistical methods used in this study were: EB 
approach, FDR test and EASE test, each being described 
in relative places in Methods.

Results

Differential pathways

There were 20389 genes in the integrated 
gene expression data which were used for the sub-
sequent study. Meanwhile, 1267 representative 
pathways were obtained based on Reactome path-
way database and effective pretreatment. For each 
representative pathway, we assigned a weight 
value according to pathway EB co-expression 
network, and the weight distribution is illustrat-
ed in Figure 1. We found that the majority of the 
number of representative pathways was distrib-
uted in the section with weight ranging from 0 to 
0.05, especially 0~0.01. The larger the weight of 
one representative pathway, the more significant 
the pathway in PTC was. In addition, we noticed 
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representative pathways with weight >0.0296 as 
differential pathways. Furthermore, a heatmap be-
tween the correlation of differential pathways and 
their weight values was created (Figure 1).

The 87 differential pathways are displayed 
in Table 1. The top 5 ranked differential path-
ways were CREB phosphorylation (Weight = 
0.2381), attachment of GPI anchor to uPAR 
(Weight=0.1905), loss of function of SMAD2/3 in 
cancer (Weight=0.1429), SMAD2/3 MH2 domain 
mutants in cancer (Weight=0.1429), and interleu-
kin-6 signaling (Weight=0.1273). The essence of 
one pathway was a sub-network built by enriched 
genes and their interactions. Hence, in this work, 
we constructed a network for each pathway uti-
lizing EB approach. Because the gene number of 
differential pathways was different and too small 
number of genes might not connect to each oth-
er in whole, we selected two differential path-
ways with larger gene amount, post-translational 
modification: synthesis of GPI-anchored proteins 
(Count=26) and regulation of HSF1-mediated heat 
shock response (Count=75), and their co-expres-
sion network is shown in Figures 2 and 3, respec-
tively. For post-translational modification: syn-
thesis of GPI-anchored proteins pathway network, 
there were 21 genes and 34 edges, while 50 genes 
were mapped to the regulation of HSF1-mediated 
heat shock response network and formed 108 in-
teractions.

Comparison with DAVID

To clarify whether differential pathways 
across PTC patients and normal controls was fea-

sible or not, we compared the proposed method 
with traditional DAVID software. A total of 429 
DEGs were explored based on Limma package 
with thresholds of p <0.01 and |log2FoldChange|>3. 
Then, Reactome pathway enrichment analysis 
showed that only 12 differential pathways were 
determined under the condition of EASE = 0.05 
and count > 2 (Table 2). The top 5 significant 
pathways were integrin cell surface interactions 
(p=0.0041), hemostasis (p=0.0043), axon guidance 
(p=0.0136), signaling by PDGF (p=0.0329) and 
hormone biosynthesis (p=0.0761). 

Unfortunately, when comparing differential 
pathways obtained from pathway co-expression 
method and DAVID, no intersection was noticed. 
However, the quantity was far more than DAVID 
and differential pathways identified based on the 
pathway co-expression method were closely cor-
related to PTC.

Discussion

In this paper, we proposed a novel method 
by connecting pathways to EB co-expression net-
work to identify differential pathways between 
PTC patients and normal controls. The results 
showed that a total of 87 differential pathways 
were identified across PTC and normal controls, 
such as CREB phosphorylation, attachment of GPI 
anchor to uPAR and post-translational modifica-
tion: synthesis of GPI-anchored proteins.

CREB, cyclic AMP responsive element bind-

Figure 1. The heatmap for differential pathways and 
their weight values.

Figure 2. Co-expression network of genes in differen-
tial pathway (post-translational modification: synthesis 
of GPI-anchored proteins). Nodes are pathway genes, 
and edges stay for the interactions among genes.
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Table 1. Differential pathways in PTC based on co-expression analysis
Pathway Weight Count

CREB phosphorylation 0.2381 7
Attachment of GPI anchor to uPAR 0.1905 7
Loss of Function of SMAD2/3 in Cancer 0.1429 7
SMAD2/3 MH2 Domain Mutants in Cancer 0.1429 7
Interleukin-6 signaling 0.1273 11
activated TAK1 mediates p38 MAPK activation 0.1250 16
Signaling by TGF-beta Receptor Complex in Cancer 0.1071 8
Sema4D mediated inhibition of cell attachment and migration 0.1071 8
Post-translational modification: synthesis of GPI-anchored proteins 0.1046 26
Activation of BAD and translocation to mitochondria 0.0953 15
CLEC7A (Dectin-1) induces NFAT activation 0.0909 11
JNK phosphorylation and activation mediated by activated human TAK1 0.0833 16
Synthesis secretion and inactivation of Glucose-dependent Insulinotropic Polypeptide 0.0758 12
HSF1 activation 0.0684 17
Regulation of HSF1-mediated heat shock response 0.0674 75
SMAD2/3 Phosphorylation Motif Mutants in Cancer 0.0667 6
Synthesis of 15-eicosatetraenoic acid derivatives 0.0667 6
TAK1 activates NFkB by phosphorylation and activation of IKKs complex 0.0633 25
Sema4D in semaphorin signaling 0.0627 27
Detoxification of Reactive Oxygen Species 0.0627 27
Synthesis secretion and inactivation of Glucagon-like Peptide-1 (GLP-1) 0.0584 19
Cellular response to heat stress 0.0571 91
Antiviral mechanism by IFN-stimulated genes 0.0570 67
ISG15 antiviral mechanism 0.0570 67
MAPK targets/ Nuclear events mediated by MAP kinases 0.055172 30
Synthesis of IP2 IP and Ins in the cytosol 0.0545 11
Intraflagellar transport 0.0526 40
Incretin synthesis secretion and inactivation 0.0519 22
Activation of BH3-only proteins 0.0507 24
Sema4D induced cell migration and growth-cone collapse 0.0507 24
TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 0.0500 16
Loss of Function of TGFBR1 in Cancer 0.0477 7
TGFBR1 KD Mutants in Cancer 0.0477 7
Anchoring fibril formation 0.0477 7
Erythrocytes take up carbon dioxide and release oxygen 0.0477 7
Erythrocytes take up oxygen and release carbon dioxide 0.0477 7
O2/CO2 exchange in erythrocytes 0.0477 7
RHO GTPases activate CIT 0.0477 15
Signaling by FGFR1 fusion mutants 0.0458 18
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 0.0455 12
TGF-beta receptor signaling activates SMADs 0.0452 31
Unfolded Protein Response (UPR) 0.0447 81
Signaling by TGF-beta Receptor Complex 0.0447 71
Ethanol oxidation 0.0444 10
Growth hormone receptor signaling 0.0435 24
RHO GTPases activate PAKs 0.0429 21
MAP kinase activation in TLR cascade 0.0424 55
ABC-family proteins mediated transport 0.0418 42
ZBP1(DAI) mediated induction of type I IFNs 0.0400 25
Nuclear Events (kinase and transcription factor activation) 0.0399 24
Striated Muscle Contraction 0.0387 31
Interferon alpha/beta signaling 0.0383 66
MyD88 cascade initiated on plasma membrane 0.0370 82
Toll Like Receptor 10 (TLR10) Cascade 0.0370 82
Toll Like Receptor 5 (TLR5) Cascade 0.0370 82
Transcriptional activation of mitochondrial biogenesis 0.0370 38
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ing protein, participates in a diverse array of cel-
lular processes, including survival, proliferation 
and glucose metabolism, and regarded as the un-
indicted cancer co-conspirator [27]. It could be ac-
tivated through phosphorylation by a number of 
kinases, including AKT, protein kinase A, and cal-

cium/calmodulin-dependent kinases and regulat-
ed genes whose deregulated expression promotes 
oncogenesis [28]. Seo et al. found CREB phosphor-
ylation in non-small cell lung cancer (NSCLC) 
cell lines and pathologic samples from the tumor 
compared to normal adjacent epithelium [29]. Be-

Translocation of GLUT4 to the plasma membrane 0.0368 59
Effects of PIP2 hydrolysis 0.0367 25
TRAF6 Mediated Induction of proinflammatory cytokines 0.0365 73
Keratan sulfate degradation 0.0364 11
Cytosolic sensors of pathogen-associated DNA 0.0362 64
TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 0.0361 83
MyD88 dependent cascade initiated on endosome 0.0350 85
Toll Like Receptor 7/8 (TLR7/8) Cascade 0.0350 85
Adherens junctions interactions 0.0345 29
Toll Like Receptor 9 (TLR9) Cascade 0.0342 89
Interferon Signaling 0.0333 181
Nucleotide Excision Repair 0.0332 49
BMAL1:CLOCK NPAS2 activates circadian gene expression 0.0324 39
EPHA-mediated growth cone collapse 0.0321 34
Cellular responses to stress 0.0317 278
Signaling by BMP 0.0316 23
Mitochondrial biogenesis 0.0315 47
Influenza Infection 0.0314 122
MyD88:Mal cascade initiated on plasma membrane 0.0313 92
Toll Like Receptor 2 (TLR2) Cascade 0.0313 92
Toll Like Receptor TLR1:TLR2 Cascade 0.0313 92
Toll Like Receptor TLR6:TLR2 Cascade 0.0313 92
Asparagine N-linked glycosylation 0.0310 113
Diseases associated with glycosaminoglycan metabolism 0.0308 26
Diseases of glycosylation 0.0308 26
VEGFR2 mediated cell proliferation 0.0303 33
Cytokine Signaling in Immune system 0.0302 294
Signaling by VEGF 0.0301 112
Post-translational protein modification 0.0301 335
Downregulation of TGF-beta receptor signaling 0.0300 25
Organelle biogenesis and maintenance 0.0296 310

Table 2. Differential pathways for PTC based on DAVID 
Pathways Count p value Genes

Integrin cell surface interactions 7 0.0041 ICAM1, TNC, ITGA2, COL1A1, THBS1, SPP1, FN1

Hemostasis 12 0.0043 TFPI, ITGA2, SERPINA1, COL1A1, TREM1, THBS1, 
MMRN1, ITPR1, PLAU, TGFB1, PLAUR, FN1

Axon guidance 5 0.0136 RPS6KA5, NCAM1, COL9A3, ST8SIA4, COL1A1

Signaling by PDGF 5 0.0329 COL9A3, COL1A1, THBS1, STAT1, SPP1

Hormone biosynthesis 4 0.0761 DIO2, TPO, ALOX5, DIO1

Metabolism of lipids and lipoproteins 5 0.3224 LPL, APOE, ABCC3, FABP4, ACACB

Signaling by Rho GTPases 4 0.4204 NGEF, TIAM1, ARHGAP36, ARHGAP24

Signaling in Immune system 6 0.6503 ICAM1, CFB, ULBP2, COL1A1, TREM1, FN1

Apoptosis 3 0.7148 BID, FAS, PMAIP1

Signalling by NGF 3 0.8591 RPS6KA5, DUSP4, ITPR1

Diabetes pathways 4 0.9199 PCSK2, GNA14, PFKFB2, ITPR1

Signaling by GPCR 8 0.9707 GNA14, AGTR1, EDN3, CCL21, CXCL2, AVPR1A, 
GABBR2, ADORA1
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sides, an increased level of phosphorylated CREB 
was observed in acute myelocytic leukemia, in-
dicating that the protein was functionally active 
[30]. However, there is no study reporting CREB 
phosphorylation in PTC, thus this is the first time 
to reveal the correlation between CREB phosphor-
ylation and PTC.

Attachment of GPI anchor to uPAR and 
post-translational modification: synthesis of 
GPI-anchored proteins was also a significant dif-
ferential pathway between PTC and normal con-
trols. uPAR is a glucose-6-phosphate isomerase 
(GPI) anchored cell surface protein that is closely 
associated with invasion, migration, and metasta-
sis of cancer cells [31]. Elevated uPAR expression 
had been detected in many human cancers, includ-
ing solid tumors, leukemias and lymphomas [32], 
and especially the uPAR levels were significantly 
higher in PTC [33]. Signaling through uPAR acti-
vates the tyrosine kinases focal adhesion kinase 
(FAK) and the MAPK pathway [34] which is a 
known biomarker in PTC. Therefore, attachment 
of GPI anchor to uPAR and post-translational 

modification: synthesis of GPI-anchored proteins 
were related to PTC closely. In the frame of onco-
genesis and cancer progression, glycosylation is 
the most common post-translational modification 
of plasma membrane proteins [35].

In conclusion, we successfully identified 
differential pathways (such as CREB phosphor-
ylation, attachment of GPI anchor to uPAR and 
post-translational modification: synthesis of 
GPI-anchored proteins) for PTC using the pro-
posed pathway co-expression method, and these 
pathways might be potential biomarkers for de-
tection and target therapy of PTC.
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