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Purpose: To determine the vital salivary transcriptomic 
biomarkers for the early detection of gastric cancer via com-
paring classification efficiency of multiple candidate genes. 

Methods: We firstly identified 5 kinds of candidate genes 
related to gastric cancer, including differential pathway 
genes (DPGs) based on the attract method, hub genes in 
differential pathways based on mutual information net-
work (MIN) analysis, differentially expressed genes (DEGs) 
identified by Significance Analysis of Microarrays (SAM), 
informative genes (DEGs in differential pathways), and key 
genes (hub DEGs). Then, the classification efficiency of these 
5 kinds of candidate genes were assessed using support vec-
tor machines (SVM) model. The genes with the best classifi-
cation efficiency were considered as salivary biomarkers in 
gastric cancer. 

Results: Using the attract method, we screened 5 differ-
ential pathways in gastric cancer, in which there were 349 

DPGs. Based on these DPGs, MIN with 345 genes and 1313 
interactions was constructed, from which we obtained 26 hub 
genes by topological analysis. Meanwhile, we identified 374 
DEGs in gastric cancer. Combining DEGs with DPGs and hub 
genes respectively, we selected 16 informative genes and 5 key 
genes. SVM analysis showed that the key genes presented the 
best classification efficiency with AUC=0.99, specificity=1.00, 
sensitivity=0.98 and MCC=0.95, which would be considered 
as salivary biomarkers in gastric cancer. 

Conclusions: This study successfully explored several sal-
ivary biomarkers for the non-invasive detection of gastric 
cancer with high specificity and sensitivity, which might 
contribute to the early detection and treatment of gastric 
cancer. 
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Gastric cancer is the fifth most common in-
cident malignancy and the third leading cause 
of cancer-related death worldwide [1]. Besides 
smoking, alcohol intake and dietary factors are 
suggested to be associated with the development 
of gastric cancer [2-4]. It is well known that me-
tastasis and invasion are basic properties of many 
malignant cancer cells and the main cause of 
cancer-related mortality [5]. Although the pres-
ent therapeutic methods could obviously prolong 
the overall survival of patients diagnosed at early 

stages, gastric cancer still carries a poor progno-
sis due to late-stage detection and inefficient late-
stage treatments. Thus, it is critical to develop a 
method that can diagnose the disease at an early 
stage to allow for better treatment options. 

As documented, it is generally believed that 
genetic factors contribute to the development and 
progression of gastric cancer. Numerous studies 
have reported a very clear influence of individual 
genes on gastric cancer [6-8]. Currently, microar-
ray technology has revealed the guiding princi-
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ples of the molecular initiation and progression, 
and these may be conducive to explore potential 
molecular biomarkers for early detection of gas-
tric cancer. Additionally, salivary diagnostics has 
become an attractive indicator to assess physio-
logical and pathological states [9,10]. Relative to 
blood- and tissue-based diagnostics, saliva, also 
as a diagnostic biofluid, presents many favorable 
attributes and could be considered as a potential 
alternative [11]. With this in mind, a number of 
investigations have reported the identification of 
salivary biomarkers for a number of cancers using 
transcriptomic technology, and yielded valuable 
information regarding the condition of the body 
[12,13], while few studies explore the applicability 
of salivary biomarkers in the detection of gastric 
cancer.

Therefore, in the current study, we aimed to 
discover salivary transcriptomic biomarkers for 
the detection of gastric cancer using mutual infor-
mation network-based support vector machines 
(SVM) classifier. To achieve this, we firstly iden-
tified 5 kinds of genes related to gastric cancer, 
including DEGs, DPGs, hub genes in differential 
pathways, DEGs in differential pathways, and hub 
DEGs. Then, we studied the classification efficien-
cy of these 5 kinds of genes using SVM model. 
The genes with the best classification could be 
considered as salivary biomarkers in gastric can-
cer, which might contribute to the early detection 
and treatment of gastric cancer. The flowchart is 
illustrated in Figure 1.

Methods

Salivary transcriptomic data

In the current study, salivary transcriptomic data 
of gastric cancer and normal condition were recruited 
from the online ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress/), under the accessing number of 
E-GEOD-64951. E-GEOD-64951 consisted of 63 gastric 
cancer samples and 31 normal subjects, and presented 
on A-AFFY-44-Affymetrix GeneChip Human Genome 
U133 Plus 2.0 [HG-U133_Plus_2] Platform. For the pur-
pose of quality control of transcriptomic data on the lev-
el of probes, standard procedures of data preprocessing 
were performed, including background correction and 
normalization by robust multi-array average algorithm 
and quantile-based algorithm [14,15], probe correction 
by micro array suite 5.0 algorithm [16], and probe filter 
by feature filter method of gene filter package. Final-
ly, the preprocessed probe level dataset in CEL formats 
were converted into gene symbol measures, and a total 
of 20,541 genes were screened for further analysis. 

Identification of DPGs 

To screen DPGs, we firstly identify differential 
pathways that showed the most differential expression 
changes in gastric cancer using the attract method [17]. 
Instead of examining individual genes, the attract meth-
od, a knowledge-driven analytical approach for identify-
ing and annotating the gene-sets that best discriminate 
cell phenotypes, was employed to determine the differ-
ential pathways between gastric cancer and normal con-
trols. In attract, GSEA-ANOVA [17], an analysis of vari-
ance-based implementation of a gene set enrichment 
algorithm, was used to test pathway-level data. Under 
GSEA-ANOVA, an ANOVA model was fitted to each gene 
where a gene’s expression was modeled by a single fac-
tor representing the cell types as distinct levels of this 
class. For gene i and its corresponding expression value 
in each replicate sample j = 1, …, rk for each cell type k = 
1, …, K, we fit the following fixed effects model:

Where u reflects the overall mean, uk represents the ef-
fect of cell type group k on the gene’s expression, and εjk 
is the random normal residual error term.

Under the null hypothesis H0: u1 = u2= … = uk, we 
assume that all K group means are equivalent. For 
group k, the mean expression was computed relying to 
the following formula:

According to the ANOVA model, the F-statistic value 
for gene i is counted:Figure 1. The flowchart of the proposed approach.

http://www.ebi.ac.uk/arrayexpress/arrays/A-AFFY-44/?ref=E-GEOD-64951
http://www.ebi.ac.uk/arrayexpress/arrays/A-AFFY-44/?ref=E-GEOD-64951
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Where MSSi is the mean treatment sum of squares, 
as well as captures the amount of variation because of 
the group-specific effects:

RSSi represents the residual sum of squares, and it is 
calculated using the following formula:

Where N means the total number of samples, as well as 
the overall mean is counted:

Here, large value of the F-statistic suggests a 
strong group-specific expression change. A small 
F-statistic was in a similar way. Moreover, we per-
formed the T-test for the log2-transformed F-statistics 
from all pathway members to the global distribution 
of log2-transformed F-statistics from all genes with 
a pathway annotation. For pathway A consisting of n 
genes, the T-statistic takes the following form:

Where N represents the total number of genes 
with a pathway annotation and the sample variances 
Sn

2 and SN
2 are defined as:

We addressed the multiple-testing issue by adjust-
ing the resulting p values using a Benjamini-Hochberg 
FDR-based method [18]. Meanwhile, the adjusted p 
value of each pathway was obtained and ranked in as-
cending order. In the present study, the Genelibs (www.
genelibs.com) for attract analysis was carried out to 

select differential pathways in gastric cancer. We se-
lected the top 5 pathways as differential pathways. The 
genes highly represented in differential pathways were 
regarded as DPGs. 

Identification of hub genes in differential pathways

Mutual information network is a subcategory of 
network inference method, and its rationale is to infer 
a link between a pair of genes when it has a high score 
on the basis of mutual information [19]. In this work, 
the context likelihood of relatedness (CLR) algorithm 
[20], an extension of the relevance network approach, 
was employed to compute the network boundary val-
ue. This algorithm computes the mutual information 
for each pair of genes and derives a score related to 
the empirical distribution of the mutual information 
values. In particular, instead of considering the infor-
mation I (Xi; Xj) between genes Xi and Xj, it takes into 
account the score zij=zi

2+zj
2 where zi=max(0,I(Xi;Xj)−μiσi) 

and μi and σi are respectively the sample mean and stan-
dard deviation of the empirical distribution of the val-
ues I(Xi, Xk), k = 1,...,n. 

In the present study, the DPGs were as the vertices 
and gene expression spectrum values via a standard-
ization were as the initial vertex relationship. Then, the 
mutual information network was displayed using igraph 
package. To explore the biological functions and signif-
icance of nodes in mutual information network, the in-
dices of topological analysis (degree [21], closeness [22], 
betweeness [23] and transitivity [24]) are often charac-
terized, in which degree is the simplest topological in-
dex. Nodes with high degree are called “hubs”, which 
interact with several other genes, suggesting a central 
role in the interaction network. In this work, the DPGs 
with degree ≥250 were considered as hub genes. 

Detection of DEGs

In the present study, the Significance Analysis of Mi-
croarrays (SAM) method was employed to screen DEGs 
between gastric cancer and normal controls. SAM 
can correlate a large number of features (for example 
genes) with an outcome variable, such as a group indi-
cator, quantitative variable or survival time [25]. Here, 
SAM identified genes with significant changes in gene 
expression by conducting a set of gene-specific t-tests 
and then assigned a score to each gene relative to the 
standard deviation of those tests. Genes are character-
ized as significant if their score is greater than an ad-
justable threshold. The percentage of such genes iden-
tified by chance was the false discovery rate (FDR). The 
significant genes were computed using the function of 
delta.table [26]. In this work, only the genes with delta 
value >1.20 were supposed to be DEGs.

Informative genes and key genes 

 To screen more stable and credible genes in the de-
velopment of gastric cancer, the intersection elements 

http://www.genelibs.com/
http://www.genelibs.com/
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between DPGs in differential pathways and DEGs were 
extracted, which were considered as informative genes 
in gastric cancer, and the intersection elements be-
tween hub genes in mutual information network and 
DEGs were named as key genes in gastric cancer.

Classification and evaluation 

Machine learning has been seen as useful and re-
liable in many applications. In machine learning, SVM 
[27] are supervised learning models with associated 
learning algorithms that analyze data and recognize 
patterns used for classification and regression analysis. 
SVM has recently become popular because of its effec-
tive learning properties [28,29]. The goal of the SVM 
algorithm is to find an optimal hyperplane that sepa-
rates the training samples by a maximal margin, with 
all positive samples lying on one side and all negative 
samples lying on the other side.

In this paper, SVM with linear kernel were utilized 
to evaluate the classification performance of 5 kinds 
of genes (DPGs, hub genes, DEGs, informative genes, 
and key genes) for gastric cancer samples. Firstly, all 
samples in this study were randomly divided into two 
parts (a balanced train set and a validated test set) on 
the basis of the proportion of 6:4. Next, SVM with lin-
ear kernel and 5-fold cross-validation method were 
employed to conduct on the train set to evaluate the 
potential classification strength of the models, and es-
timate its prediction power on the test set. To assess 
the classification performance, several measures pre-
senting different views were employed. The area un-
der the receiver operating characteristics curve (AUC) 
is a good measure for evaluating the predictive ability 
of machine learners. Matthews correlation coefficient 
(MCC) ranges from -1 to +1, where +1 represents total 
agreement and -1 indicates total disagreement. Speci-
ficity is the degree of true negative’s identification, and 
sensitivity means the degree of true positive’s identifi-
cation. In the present study, the measures of AUC, MCC, 
specificity and sensitivity were employed to detect an 
adequate overview of the classification performance. 

Results
Identification of differential pathways and DPGs

In the current study, the attract method was 
employed to determine the differential pathways 
in gastric cancer. Based on the KEGG enrichment 
analysis for 20541 genes in gene expression pro-
file, a total of 277 pathways with gene count >5 
were obtained. Then the attract method was uti-
lized to calculate the difference values of 277 
pathways based on a series of statistic analysis. 
On the basis of the adjusted p values in ascending 
order, the top 5 significantly differential pathways 
were selected as differential pathways, including 
ErbB signaling pathway, Notch signaling path-

way, VEGF signaling pathway, Oocyte meiosis, 
and Oxytocin signaling pathway. The details was 
shown in Table 1. In these differential pathways, 
there were 349 gene members which were regard-
ed as DPGs.

MIN property analysis and hub genes

To further reveal the importance of 349 DPGs, 
MIN was constructed based on CLR algorithm 
in this paper (Figure 2). In MIN, there were 345 
genes and 1313 interactions. Then we performed 
topological analysis for MIN, and obtained a total 
of 26 hub genes under the threshold value of de-
gree ≥250. 

Detection of DEGs, informative genes, and key genes

In this work, SAM method was utilized to 
identify genes with significant changes in gene 

Table 1. The top 5 pathways based on the adjusted p 
values in ascending order

Pathway Adjusted  
p value

Number 
of genes

ErbB signaling pathway 0.15 87

Notch signaling pathway 0.15 48

VEGF signaling pathway 0.15 58

Oocyte meiosis 0.15 110

Oxytocin signaling pathway 0.15 151

Figure 2. Mutual information network for differential 
pathway genes in gastric cancer. Nodes are genes, and 
edges are the interactions among two genes. The yel-
low nodes are key genes.
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expression between gastric cancer and normal 
controls. Under the criteria of delta value>1.20, a 
total of 374 DEGs were identified in gastric can-
cer. Moreover, to screen more stable and credible 
genes in the development of gastric cancer, we 
selected 16 informative genes which were the in-
tersection elements between DPGs and DEGs, and 
5 key genes which were the intersection elements 
between hub genes and DEGs. The 5 key genes 
were PPP2CA, PTGS2, ROCK1, SKP1, and SLK, 
whose topological parameters are shown in Table 
2. Also, from Figure 2, it is obvious that the 5 key 
genes were well clustered in the central location 
of the network, showing a key role in the gene 
regulation during the occurrence and develop-
ment of gastric cancer.

Classification and evaluation

After identifying five kinds of genes (DPGs, 
hub genes, DEGs, informative genes, and key 
genes), their classification performance for sam-
ples was assessed by SVM model. The results 
were shown in Table 3. Based on 5-fold cross-vali-
dation, 5 key genes we identified showed the best 
classification efficiency with AUC=0.99, specific-
ity=1.00, sensitivity=0.98 and MCC=0.95, which 
could distinguish gastric cancer samples from 
normal subjects. Thus, the key genes with the 
best classification efficiency could be considered 
as salivary biomarkers in gastric cancer.

Discussion

To date, lack of effective biomarkers for early 

detection of gastric cancer leads to poor progno-
sis and incurable situation in most settings [30]. 
The identification biomarkers for non-invasive 
detection of gastric cancer is of considerable pub-
lic health importance. Saliva-based translational 
studies are at a matured juncture to be explored 
for early detection of a systemic cancer. Thus, 
in the present study, we combined altered gene 
expression, altered pathways with network strat-
egy to harness 5 kinds of candidate biomarkers 
(DPGs, hub genes, DEGs, informative genes, and 
key genes) to identify discriminatory salivary 
biomarkers for gastric cancer detection. Based on 
SVM model, the key genes yielded a AUC value of 
0.99 with sensitivity (0.98) and specificity (1.00) 
in distinguishing gastric cancer from normal 
control, showing a great clinical discrimination, 
which could be considered as early detection bio-
markers for gastric cancer.

In this work, a total of 5 key genes (PPP2CA, 
PTGS2, ROCK1, SKP1, and SLK) were identified, 
of which several genes have been indicated to 
correlate with the development of gastric can-
cer, such as PTGS2 and ROCK1. PTGS2 (prosta-
glandin-endoperoxide synthase 2, also known 
as cyclooxygenase-2 or COX-2) is a pro-inflam-
matory factor, which is elevated during inflam-
mation. There is strong evidence that PTGS2 is 
associated with most solid tumor types, such 
as breast cancer [31], colorectal cancer [32] and 
pancreatic cancer [33]. Meanwhile, many au-
thors suggest that PTGS2 is not only associat-
ed with the carcinogenesis of gastric cancer, but 
also related to the chemotherapeutic potentials 

Table 2. The 5 key genes with the different network indicators

Key gene
Parameters

Degree Closeness Betweeness Transitivity

PPP2CA 263 4.76 329 0.15

PTGS2 271 3.64 0 0.15

ROCK1 262 1.11 0 0.15

SKP1 264 6.12 2801 0.15

SLK 253 5 2811 0.15

Table 3. Classification performance of genes based on support vector machines model

Genes
Measures

AUC Specificity Sensitivity MCC

DEGs 0.72 0.68 0.85 0.67

DPGs 0.68 0.68 0.77 0.65

Hub genes 0.95 0. 87 1.00 0.85

Informative genes 0.88 0.98 0.92 0.88

Key genes 0.99 1.00 0.98 0.95

AUC: the area under the receiver operating characteristics curve, MCC: Matthews correlation coefficient
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in gastric cancer [34,35]. ROCK1 is a protein ser-
ine/threonine kinase also known as rho-associat-
ed, coiled-coil-containing protein kinase 1. It is 
indicated that ROCK1 plays a central role in tu-
mor cell invasion and metastasis, and its inhib-
itors can be used in cancer therapy [36]. Further 
research found that ROCK1 and RhoA-ROCK sig-
naling pathway may be involved in gastric can-
cer cell migration, invasion and gastric cancer 
progression, and could be considered as novel 
therapeutic and prognostic targets for early gas-
tric cancer [37-39]. Although there has previous-
ly been little direct evidence that the other 3 key 
genes are associated with the development and 
progress of gastric cancer, they are all implicated 
in cell cycle progression, transcriptional regula-
tion, signal transduction, and many other cellular 
processes in cells [40-42]. In this study, the 5 key 
genes were proven to be salivary biomarkers for 
gastric cancer, contributing to the early detection 
and treatment of gastric cancer. 

Moreover, we identified 5 differential path-
ways in this study. Recent studies have reported 
that Notch signaling pathway contributes to tum-
origenesis and metastasis of human gastric can-
cer [43,44], and the genetic or pharmaceutical ma-
nipulation of Notch signaling pathway might pro-
vide therapeutic benefit for gastric cancer. ErbB 
signaling pathway and VEGF signaling pathway 
are also reported to be related to the growth and 
survival of gastric cancer [45,46]. 

In summary, comparing classification efficien-
cy of 5 kinds of candidate biomarkers, this study 
explored salivary biomarkers for the non-invasive 
detection of gastric cancer with high specificity 
and sensitivity. In a further study, we will perform 
a validation study to confirm the significance and 
importance of these biomarkers.
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