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Purpose: The purpose in this study was to select key genes 
related to ovarian cancer. 

Methods: The gene expression profiles of E-GEOD-6008, 
E-GEOD-26712, E-GEOD-27651, E-GEOD-14001 were ob-
tained from ArrayExpress database (http://www.ebi.ac.uk/ar-
rayexpress/). Following data recruitment and preprocessing, 
differentially expressed genes (DEGs) were characterized using 
Significance Analysis of Microarrays (SAM). Then, a differ-
ential expression network (DEN) was constructed using Cyto-
scape 2.1 software based on differential and non-differential 
interactions. Pathway analysis was performed based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
database using Pathway Analysis with the nodes contained in 
the main DEN. Centrality analysis on the DEN was conducted 
to selected HUB genes. And last, western blot was performed 
on the selected genes in an independent sample set. 

Results: A total of 370 samples (347 ovarian tumors and 

23 controls) were selected. In all, 490 DEGs were obtained, 
which contained 59 upregulated and 431 downregulated 
genes. A DEN including 875 gene pairs (1028 nodes) was 
constructed. There were 7 pathways by analyzing the nodes 
contained in the main DEN. Five HUB genes were gained, 
and three (UBC, ELAVL1, SIRT1) were both HUB genes and 
disease genes. Meanwhile, SIRT1 and NEDD4 were down-
regulated genes. Verification experiments indicated that the 
expression of SIRT1 and ELAVL1 in the disease group and 
the normal group were significantly changed. 

Conclusions: This study showed that SIRT1 could be cho-
sen as a potential biomarker for promoting detection of 
ovarian cancer, so as to further understand the molecular 
pathogenesis of this disease. 
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Ovarian cancer is a malignancy with an es-
timated 21,980 new cases and 14,270 deaths in 
2014 in the United States [1]. These neoplasms 
are classified into distinct morphologic categories 
based on the appearance of the epithelium into 
tumors of serous, mucinous, endometrioid, clear 
cell, transitional, squamous, mixed and undiffer-
entiated type [2]. Epithelial ovarian cancer is com-
posed of a diverse group of tumors that can be 
derived from the ovary, fallopian tube or endome-

trium [3]. Despite advances in the disease detec-
tion and cytotoxic therapies, fewer than 40% of 
women with ovarian cancer are cured, and more 
than 60% patients present with advanced disease 
because of the silent tumor progression .

It is well known that the development and 
progression of tumors are related to accumulated 
molecular genetic or genomic changes [5]. Gene 
expression profiling had been widely used for 
cancer research. Tomas et al. [6] pointed out that 
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gene expression profiling can identify a prognos-
tic signature accounting for these distinct clini-
cal outcomes. It has been reported that FGF9 is a 
key factor contributing to the cancer phenotype of 
ovarian endometrioid adenocarcinomas carrying 
Wnt/ß-catenin pathway defects [7]. It was indicat-
ed that the anterior gradient homolog 3 (AGR3) 
gene could serve as a prognostic marker for sur-
vival in patients with low- and high-grade serous 
ovarian carcinomas [8]. PAX2 was found to be 
one of the most upregulated genes in low-grade 
ovarian serous carcinoma [9]. Genomewide asso-
ciation studies had identified four susceptibility 
loci for epithelial ovarian cancer with another two 
loci being close to genomewide significance [10]. 
Despite the expanded efforts to study the genet-
ic bases of ovarian cancer, the molecular mech-
anisms of the development and progression are 
still unclear.

The cross validation of datasets would signifi-
cantly reduce these false findings and increased 
sensitivity [11]. Meanwhile, a large number of net-
work approach for researching cancers were sprung 
up, such as biomolecular networks protein-protein 
interaction (PPI) network, gene regulatory net-
works [12,13], gene coexpression networks [14], 
statistical epistasis networks [15], weighted inter-
action network [16], and so on. DEN is a brand new 
network-based approach, which not only covers dif-
ferential genes (DG) or differential network (DN), 
but also includes disease-related non-differential 
interactions which are missed in DN [17]. It was in-
dicated that if the Spearman correlation coefficient 
was strongly correlated (>0.7) in one condition, 
but not in other conditions, then this edge was de-
fined as differential interaction. If the edge was not 
differential interaction, but two endpoints (linked 
genes or coded proteins) of the edge were both dif-
ferentially expressed, then this edge was noted as 
‘non-differential interactions’ [17].

In the present study, we employed the DEN 
method, so as to select key genes related to ovari-
an cancer as far as possible accurately. Firstly, we 
conducted recruitment and preprocessing of the 
four groups of gene expression profiles obtained 
from ArrayExpress database. Then, immediate-
ly DEGs were screened. Following this the DEN 
which contained not only differential interactions, 
but also contained non-differential interactions 
was constructed. Pathway analysis was performed 
based on the KEGG database using nodes con-
tained in the main DEN. We gained HUB genes 
via analyzing the degree centrality of the DEN. 
Meanwhile, in order to further prove the accura-

cy of our experiment, we conducted molecular bi-
ology experiments and western blot on the HUB 
genes that we gained.

Methods

Bioinformatics analysis

Data recruitment and preprocessing

The gene expression profiles of E-GEOD-6008, 
E-GEOD-26712, E-GEOD-27651 and E-GEOD-14001 
were obtained from ArrayExpress database (http://
www.ebi.ac.uk/arrayexpress/). E-GEOD-6008 was ex-
isted in Affymetrix HG-U133A platform, the data were 
gained from 99 individual ovarian tumors (37 endo-
metrioid, 41 serous, 13 mucinous, and 8 clear cell car-
cinomas) and 4 individual normal ovary samples [7]. 
E-GEOD-26712 was completed for an extensive set 
of 185 primary ovarian tumors and 10 normal ovari-
an surface epithelium using the Affymetrix human 
U133A microarray [6]. E-GEOD-27651, existed in Affy-
metrix HG-U133Plus2 platform, was generated from 6 
human ovarian surface epithelia, 8 serous borderline 
ovarian tumors, 13 low-grade serous ovarian carcino-
mas, and 22 high- grade serous ovarian carcinomas [8]. 
E-GEOD-14001 was existed in Affymetrix HG-U133P-
lus2 platform, the data were gained from 3 normal hu-
man ovarian surface epithelia and from 10 low-grade 
and 10 high-grade serous ovarian carcinoma samples 
to perform gene expression profiling [9]. In all, a total 
of 370 samples (347 ovarian tumors and 23 controls) 
were selected. All of the microarray data and annota-
tion files of healthy human beings and ovarian cancers 
were downloaded for further analysis. 

We carried out background correction and normal-
ization by robust multichip average (RMA) method [18] 
and quantile based algorithm [19] so as to eliminate 
the influence of nonspecific hybridization. Micro Array 
Suite 5.0 (MAS 5.0) algorithm was used to revise per-
fect match and mismatch value [20], which value was 
selected by the median method. Meanwhile, the gene 
expression value was transformed to a comparable 
level. Also, genefilter package was used to discard the 
probe if it couldn’t match any genes and average the 
expression value over probes as the gene expression 
value if the gene had multiple probes [21]. 

After preprocessing, there were 12493, 12493, 
20102 and 20102 probes in the gene expression profiles 
of E-GEOD-6008, E-GEOD-26712, E-GEOD-27651, and 
E-GEOD-14001, respectively.

Identifying DEGs

The propensity of many diseases can be reflected 
in a difference of gene expression levels in particular 
cell types and this has been well confirmed [22]. For 
this reason, genes showing different expression levels 
in control crowds and case strains are likely related to 
the disease. Distance-weighted discrimination (DWD) 
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is a classification (discrimination) method, which 
was realized from a high-dimensional analysis of the 
support vector machine (SVM) [23]. After having pre-
processed all of the four profiles, we chose DWD to 
combine these four data and conduct comprehensive 
analysis of them. Furthermore, Significance Analysis 
of Microarrays (SAM) [24] was used to calculate gene 
expression values, so as to select out DEGs. For genes 
with scores greater than an adjustable threshold, SAM 
uses permutations of the repeated measurements to es-
timate the percentage of genes identified by chance, the 
false discovery rate (FDR). In this study, the threshold 
value FDR <0.05 and a delta cut-off value of >6.029 was 
used.

PPI network

The original PPI network was integrated from Bi-
ological General Repository for Interaction Datasets 
(BioGrid, http://thebiogrid.org/). In the BioGrid, there 
were 15,750 genes and 248,584 interactions of human 
beings in all. Based on the four transcript data, the PPI 
network including 10,629 genes and 186,800 relation-
ships was then constructed. 

Calculating Spearman correlation coefficients of gene re-
lationships

Spearman correlation coefficient is a popular 
method to describe the interaction strength between 
genes [25]. After having extracted the gene expression 
values under different conditions (controls and ovarian 
cancer) separately, the Spearman correlation coefficient 
of each edge was computed, which denoted as A1 and 
A2, respectively. Meanwhile, the absolute value of the 
difference between the two Spearman correlation coef-
ficient was denoted as |A1-A2|. 

Determining the threshold of p value 

Two models (one for the normal group, the other 
for disease group) were built randomly so as to deter-
mine how to choose the gene relationships for further 
research, each model containing 200,000 gene rela-
tionships, the gene relationships of which were ran-
domly captured from the genes that contained in the 
original PPI network. The Spearman correlation coeffi-
cients of edges in two models (A1,A2) were calculated 
respectively. The absolute values of their correlation 
coefficients (|A1-A2|) were obtained. Setting the abso-
lute value of the correlation coefficients in descending 
order, we found that when the threshold of p value 
was set at 0.05, the absolute value of the correlation 
coefficient was 0.839. Consequently, we conducted the 
Spearman value of the 186,800 relationships that we 
obtained from BioGrid in descending order and select-
ed out those gene relationships whose absolute value 
of the correlation coefficient was greater than 0.839, as 
well as at least one of the Spearman correlation coeffi-
cients was greater than 0.7. 

Constructing DEN 

The differential interactions were obtained by set-
ting the threshold of |A1-A2| greater than 0.839, as well 
as at least one of A1 or A2 was greater than 0.7. And for 
those gene relationships whose |A1-A2| was less than 
or equal to 0.839 but both of the nodes were all DEGs 
were non-differential interactions. The network was 
constructed using Cytoscape 2.1 software after having 
selected out all of the differential and non-differential 
interactions.

Functional enrichment analysis of the nodes contained in 
main DEN

KEGG is an effort to link genomic information 
with higher order functional information by comput-
erizing current knowledge on cellular processes and by 
standardizing gene annotations [26]. In this study, the 
KEGG database was applied to investigate the enrich-
ment analysis of the nodes containing in main DEN 
involved in the occurrence and development of ovarian 
cancer. The database for Annotation, Visualization and 
Integrated Discovery (DAVID) [27] was used to perform 
the KEGG pathway enrichment analysis with the p val-
ue < 0.01 and gene count > 5.

Centrality analysis

Centrality analysis is a network analysis method 
to investigate biological networks, such as gene regu-
latory, protein interaction and metabolic networks so 
as to identify interesting elements of a network [28,29]. 
Centrality measures mainly contain degree centrality, 
closeness centrality and shortest path betweenness 
centrality, in which degree is the simplest topological 
index [30]. Nodes with high degree (highly connected) 
are called “HUBS”, which interact with several other 
genes, suggesting a central role in the interaction net-
work [31]. In this work, the degree of the genes which 
were equal or greater than 11 were considered as HUB 
genes. 

Disease genes contained in the DEN

Genecards is a database of human genes that pro-
vides genomic, proteomic, transcriptomic, genetic and 
functional information on all known and predicted hu-
man genes [32]. In this study, we downloaded all of the 
disease genes that associated with ovarian cancer from 
Genecards database (http://www.genecards.org/). There 
were 3231 disease genes associated with ovarian can-
cer in all in the database. The disease genes included in 
the DEN were ascertained by comprehensive statistical 
analysis.

Experimental verification

Materials

In this study, 10 ovarian cancer samples (3 endome-
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trioid, 3 serous, 2 mucinous, 2 fiber intraepithelial neopla-
sia) (7 newly diagnosed and 3 retreatment) were derived 
from the patients who were operated from January 2014 
to December 2015 in our hospital. The normal groups 
were taken from the distal tissue of the tumor tissue at a 
2 cm distance. The patients selected did not show statis-
tical significance (p>0.05) in age, gender, medical history 
or geographical. The antibodies used in the experiments 
were purchased from Santa Cruz Biotechnology, Inc. Taq 
polymerase, dNTP, ultra-pure water and DNA marker 
were purchased from Takara Company and Beijing Ding 
States Biological Technology Company. The total cellular 
RNA extraction kit was purchased from Invitrogen Com-
pany. All of the other reagents were of analytical grade.

RT-PCR

The total RNA was extracted using RNA extraction 
kit following the manufacturers’ recommendations. 
The cDNA was synthesized according to the following 
reaction system: 4.0 μL RNA and 3.0 μL Oligodt18 were 
mixed evenly, then put it into 70 ℃ water bath for 5 min, 
and put on ice immediately after denaturation; then 2.0 
μL RNasin (40 U/μL), 8.0 μL 5 × reverse transcriptase 
buffer, 8.0 μL dNTPs and 2.0 μL AMV reverse transcrip-
tase (5 U/μL) were added, mixed evenly and then put it 
into 37 ℃ water bath for 60 min. Meanwhile, we repack-
aged the AMV reverse enzyme which had been inac-
tivated at 95 ℃ for 5 min and saved them under -20 ℃.

Different cDNA was taken as templates, and β-ac-
tin was taken as reference according to the following re-
action system for PCR amplification, respectively. The gene 
primer sequences (5’-3’) were as follows: UBC: F-TCGGCCT-
TAGAACCCCAGTA/R-GAGATCCCTCCGCAGAATCG; SF3A2: 
F-CCCAGTCTGCTAAAGCCCTA/R-TGCTCGTACGCAGA-
CATGAA; ELAVL1: F-GGTCGTGCGCGCTGAG/R-TTCAGC-
GTGTTGATCGCTCT; SIRT1: F-AACAGGTTGCGGGAATC-
CAA/R-TGGGTGGCAACTCTGACAAA; NEDD4: F-GGAG-
GACGAGGAAAATTCACGA/R-CCCAGCCAGGCTCTAATTCC; 
β-actin: F- AAGTACTCCGTGTGGATCGG/R-TCAAGTTGGG-
GGACAAAAAG.

PCR reaction system was as follows: 10.0 μL 
10×PCR Buffer, 1.0 μL TaqDNA polymerase (5 U/μL), 3.0 
μL upstream primers, 3.0 μL downstream primers and 
8.0 μL dNTPs. The PCR reaction conditions were as fol-
lows: UBC:95 ℃ 1 min; 30 cycles of 95 ℃ 1 min, 55 ℃ 30 s, 
72 ℃ 30 s; 72 ℃ 10 min; SF3A2: 95 ℃ 5 min; 30 cycles of 
94 ℃ 30 s, 55 ℃ 40 s, 72 ℃30 s; 72 ℃ 10 min; ELAVL1: 95 ℃ 
1 min; 35 cycles of 94 ℃ 30 s, 56 ℃ 30 s, 72 ℃ 1 min; 72 ℃ 
7 min; SIRT1: 95 ℃ 1 min; 30 cycles of 94 ℃ 30 s, 54 ℃ 30 
s, 72 ℃ 30 s; 72 ℃ 7 min; NEDD4: 95 ℃ 1 min; 35 cycles of 
94 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 1 min; 72 ℃ 7 min; β-actin: 95 
℃ 1 min; 30 cycles of 94 ℃ 10 s, 51 ℃ 1 min, 72 ℃ 30 s; 72 
℃ 7 min. The experiment was repeated thrice and plotted 
using the average value of the data.

Western blot

Firstly, proteins were extracted according to the 

extraction method of cytoplasmic protein which was 
reported by Yoon et al [33]. Then, SDS-PAGE gel (12%) 
was used to separate the proteins. After electrophore-
sis, the proteins were power-transfered (4 ℃, constant 
current 300 mA, 2 hrs) to nitrocellulose membranes, 
then the membranes were closed in TBST solution (Tris 
buffer containing 0.1% Tween-20) with 5% non-fat dry 
milk at room temperature, then stayed in TBST solu-
tion containing the first antibody (1: 10000 dilution) at 
37 ℃ for 2 hrs. Collected the first antibody, and washed 
the membranes by TBST solution for three times. Then 
the membranes stayed in TBST solution containing 
HRP-labeled goat antirabbit IgG secondary antibody 
(1:5,000) for 2 hrs at room temperature. Washed the 
membranes by TBST solution for 15 min three times 
and then by ultra-pure water twice. Finally, substrates 
were added to the membranes to react for 3 min and ex-
posed in the dark. The experiment was repeated thrice.

Data analysis

The Bio-Rad gel imaging analyzer was used to ob-
serve and photograph the results of 1.5% agarose gel 
electrophoresis so as to analyze the PCR products. The 
result that analyzed by Quantity One software of gel 
imaging system was shown by the relative content of 
the target gene and β-actin band. Image J was used to 
analyze the gray values of the protein bands and the 
results were represented with the relative content of 
target protein and GAPDH bands. Data between groups 
were analyzed with t-test by SPSS 19.0 (p>0.05: no dif-
ference; 0.001<p<0.05: difference; p<0.001: significant 
difference).

Results

Bioinformatics analysis

Identifying DEGs 

After having preprocessed all of the four pro-
files, DWD were chosen to combine these four 
data and conduct comprehensive analysis of 
them. There were 12491 genes remained in com-
bined dataset after processing DWD. Furthermore, 
SAM of the samr software package was used to 
calculate gene expression values. In this condi-
tion, when we set the threshold value FDR<0.05 
and a delta cut-off value of >6.029, we obtained 
490 DEGs in all, which contained 59 upregulated 
and 431 downregulated genes.

Constructing DEN

As we introduced before, the DEN should be 
constructed by complementarily considering both 
differential and non-differential interactions. Here 
we got 744 differential interactions via conduct-
ing analysis on the absolute value of the Spear-
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man correlation coefficients of gene pairs in two 
conditions. Furthermore, there were 131 gene 
pairs whose nodes were both DEGs but the abso-
lute value of the Spearman correlation coefficients 
in two conditions was less or equal to 0.839. In 
other words, there were 131 non-differential in-
teractions. Therefore, the DEN, including 875 
gene pairs (1028 nodes), was constructed. Howev-

er, there were some gene pairs not containing in 
the main DEN. By conducting statistical analysis 
on the major network (Figure 1), there were 506 
genes and 532 edges containing in it.

KEGG pathways analysis

In order to gain further insights into the func-
tion of the nodes contained in the main DEN, DA-

Figure 1. The main differential expression network involved in ovarian cancer. HUB genes were enlarged. Red 
nodes and green nodes represent upregulated and downregulated genes in ovarian cancer, respectively, and blue 
nodes represent non-DEGs. Red edges represent overexpressed differential interactions, while green edges repre-
sent downexpressed differential interactions in ovarian cancer compared to normal ovary, respectively, and black 
edges represent non-differential interactions. 

Table 1. The KEGG pathway of the nodes contained in the main DEN

ID Term Count p value

hsa03420 Nucleotide excision repair 13 2x10-7

hsa04120 Ubiquitin mediated proteolysis 22 3x10-7

hsa03040 Spliceosome 18 2.4x10-5

hsa05211 Renal cell carcinoma 12 1.8x10-4

hsa04114 Oocyte meiosis 13 2.6x10-3

hsa03002 Basal transcription factors 7 3.4x10-3

hsa04720 Long-term potentiation 9 8.5x10-3
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VID was applied to identify the significant dysreg-
ulated KEGG pathways. By setting the threshold p 
value <0.01 and gene count >5, 7 pathways were 
obtained (Table 1). They were Ubiquitin mediated 
proteolysis, Spliceosome, Nucleotide excision re-
pair, Renal cell carcinoma, Oocyte meiosis, Basal 
transcription factors and Long-term potentiation.

Disease genes including in the DEN

By comprehensive statistical analysis, 335 
disease genes among the 3231 disease genes in 
all that we obtained from the Genecards database 
were included in the DEN we built above.

Centrality analysis to gain HUB genes

We found that the degree distribution dis-
played approximating a power-law via conducting 
analysis on the nodes degree of the main DEN that 
we built above (Figure 2), suggesting that the DEN 
was a scale-free network [34]. Meanwhile, five HUB 
genes were obtained as we set the degree of the 
nodes containing in the main DEN in descending 
order, including UBC (degree=196), SF3A2 (de-
gree=14), ELAVL1 (degree=13), SIRT1 (degree=12), 
and NEDD4 (degree=11). Thereinto, SIRT1 and 
NEDD4 were downregulated genes. Furthermore, 
UBC, ELAVL1, SIRT1 were also disease genes. 

Experimental verification

In our study, RT-PCR and Western blot were 
implemented to confirm the mRNA and protein 

Figure 2. The scattergram of gene degree distribution 
in the main differential expression network. The degree 
distribution presented a power law, indicating the char-
acter of scale-free network.

Figure 3. The variation of gene expressions of UBC (A), SF3A2 (B), ELAVL1 (C), SIRT1 (D) and NEDD4 (E) 
via RT-PCR. The electrophoresis images came from representative cases and the histograms were obtained by 
mapping with the average data of the statistic data on the gray values of the protein bands. Arabic numeral 1 
represents disease group, and arabic numeral 2 represents normal group. Two asterisks (**) indicate p<0.001, one 
asterisk (*) indicates 0.001<p<0.05, while no asterisk indicates p>0.05 when compared to the control.
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expression levels of five HUB genes (UBC, SF3A2, 
ELAVL1, SIRT1, NEDD4). The relative expression 
of mRNAs and corresponding proteins are shown 
in Figure 3 and 4, respectively. We found that the 
expression of SIRT1 and NEDD4 were significant-
ly downregulated in ovarian cancer compared with 
normal condition, and there was no difference in 
the expression of SF3A2 in two conditions, which 
were coincident with our bioinformatics results. 
The expression of UBC and ELAVL1 were signifi-
cantly upregulated in ovarian cancer compared 
with normal condition from RT-PCT and Western 
blot analyses, however their expression levels 
were non-differential between ovarian cancer and 
normal subjects in the datasets. 

Discussion

Ovarian cancer is the seventh leading cause 
of cancer-related death in women [35]. Because 
of the location of the ovaries, it is difficult to de-
tect this disease at earlier stages [4]. Thus, most 
women, although initially responsive, eventually 
develop and succumb to drug-resistant metasta-

ses [36]. Therefore, new biomarkers for promoting 
early detection of ovarian cancer are essentially 
necessary for further understanding of the mo-
lecular pathogenesis. Understanding the etiolog-
ic heterogeneity of ovarian cancer may result in 
more tailored treatments and ultimately reduce 
morbidity and mortality from this disease.

In this study, we chose DEN to research the 
gene expression profiles of ovarian cancer, ex-
pected to select out key genes related to ovarian 
cancer, for further understanding of the molec-
ular pathogenesis. We got five HUB genes: UBC, 
SF3A2, ELAVL1, SIRT1, and NEDD4. Thereinto, 
SIRT1 and NEDD4 were downregulated genes. 
And UBC, ELAVL1 and SIRT1 were also disease 
genes. However, the results of the experimental 
verification were not completely coincident with 
our bioinformatics results. The expression of UBC 
and ELAVL1 which were not DEGs according to 
our bioinformatics results were significantly up-
regulated in ovarian cancer compared with nor-
mal condition. The probable reasons were the fol-
lowing: firstly, the microarray data was obtained 
from ArrayExpress database but not generated 

Figure 4. The variation of protein expressed by UBC (A), SF3A2 (B), ELAVL1 (C), SIRT1 (D) or NEDD4 (E) via 
Western blot. The electrophoresis images came from representative cases and the histograms were obtained by 
mapping the average data of the statistic data on the gray values of the protein bands. Arabic numeral 1 rep-
resents disease group, and arabic numeral 2 represents normal group. Two asterisks (**) indicate p<0.001, one 
asterisk (*) indicates 0.001<p<0.05, while no asterisk indicates p>0.05 when compared to the control. 



Key genes involved in ovarian cancer 55

Running title: 

JBUON 2017; 22(1): 55

by ourselves. Secondly, it might due to the small 
number of samples in the experimental groups. 
Finally, the criteria of differential expression be-
tween bioinformatics and experimental verifi-
cation were different, one used SAM methods to 
identify DEGs under the threshold of FDR < 0.05 
and a delta value > 6.029 and the other performed 
a t-test to decide the significant difference.

In our study, although the expression lev-
el of UBC was non-differential in two conditions 
using traditional differential expression method, 
it was screened out by DEN method, and its de-
gree was the highest (degree=196), suggesting 
a central role in the network. Ubiquitin (Ub) is a 
small, highly conserved eukaryotic protein that 
plays a crucial role in diverse cellular signaling 
pathways, including targeting proteins for prote-
asomal degradation [37]. In eukaryotes, ubiquitin 
comes from the protein product of gene UBC and 
some other genes [38]. Meanwhile, ubiquitin-me-
diated proteolysis was a significantly correlated 
pathway identified by our KEGG enrichment anal-
ysis. It had been indicated that the disruption of 
UBC resulted in embryonic lethality with defec-
tive fetal development [39]. It was such an import-
ant HUB gene that was neglected by traditional 
methods via screening DEGs. It further proves 
the superiority of DEN method for screening key 
genes from another point, that DEN can fully ex-
plore all disease-related interactions including 
non-differential and differential interactions. 

Although ELAVL1 was not DEG, we could find 
that the expression of ELAVL1 in disease group 
and normal group was significantly changed via 
analyzing the results of verifying experiments. 
ELAVL1 belongs to a highly conserved family of 
genes encoding RNA-binding proteins and has been 
linked to cell growth and proliferation through its 
regulation of mRNA stability [40]. It was reported 
that variation in angiogenesis-related genes, such 
as ELAVL1, may be associated with ovarian can-
cer risk and more specifically may influence tumor 
invasiveness [41]. Meanwhile, ELAVL1 overexpres-
sion is a biomarker of poor survival, as a sign of 
tumor progression in an hostile microenvironment 

able to select the most aggressive cancer cells [42].
Meanwhile, it could be easily found that the ex-

pression of SIRT1 in the disease and normal group 
was significantly changed by analyzing the results 
of verifying experiments, which coincided with our 
bioinformatics results. Mammalian SIRT1 is a NA-
D+-dependent deacetylase, which is involved in a 
wide spectrum of biological processes, including 
stress responses, cellular metabolism, and possi-
bly, aging and tumorigenesis [43]. Researchers had 
uncovered a novel function of the longevity mol-
ecule SIRT1 as a potential marker and modulator 
of the drug resistance phenotype in ovarian cancer 
[44]. It was reported that expression of SIRT1 was 
significantly increased in malignant ovarian epi-
thelial tumors compared to benign and borderline 
ovarian epithelial tumors (p<0.001) [45]. Li et al. 
[46] reported for the first time that BRCA1, a tumor 
suppressor gene involved in multiple cellular pro-
cesses, was a positive regulator of SIRT1 levels and 
a negative regulator of NAD-related SIRT1 activity, 
which further correlated the physiological proper-
ties of BRCA1 with SIRT1-related metabolism in 
ovarian cancer cells. Meanwhile, it was reported 
that in serous ovarian carcinoma, the TP53 showed 
loss of function in precancerous ovarian lesions 
[47], while there were several reports indicating 
that there were some interactions between TP53 
and SIRT1 [48,49]. In this case, the loss of SIRT1 
expression could act as a candidate biomarker for 
promoting detection of ovarian cancer.

In the present research, SIRT1 was a signifi-
cantly downregulated HUB disease gene, coincid-
ing completely with the experimental verification 
of the bioinformatics results of SIRT1. Thus, we 
predict that SIRT1 can be chosen as a potential 
biomarker for promoting the detection of ovarian 
cancer, and also to further understand the molec-
ular pathogenesis of ovarian cancer. Furthermore, 
we’ll conduct an in-depth study on the relation-
ship between SIRT1 and ovarian cancer.
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