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Summary

Purpose: The purpose of this study was to explore the path-
way cross-talks and key pathways in non-small cell lung 
cancer (NSCLC) to better understand the underlying patho-
logical mechanism.

Methods: Integrated gene expression data, pathway data 
and protein-protein interaction (PPI) data were assessed 
to identify the pathway regulatory interactions in NSCLC, 
and constructed the background and disease pathway cross-
talk networks, respectively. In this work, the attractor meth-
od was implemented to identified the differential pathways, 
and the rank product (RP) algorithm was used to determine 
the importance of pathways.

Results: Based on 787,896 PPI interactions from STRING 
database and 300 human pathways from KEGG, we con-

structed the back pathway cross-talk network with 300 
nodes and 42239 edges. Integrating with expression data 
of NSCLC, each pathway cross-talk endowed with a weight 
value, and disease pathway cross-talks were identified. By 
RP algorithm and topology analysis of network, we selected 
5 key pathways, including Alanine, DNA replication, Fan-
coni anemia pathway, Cell cycle and MicroRNAs in cancer 
under the pre-set thresholds.

Conclusion: We successfully revealed the disease pathway 
cross-talks and explored 5 key pathways in NSCLC, which 
may be the underlying therapeutic targets for lung cancer.
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Introduction

 Lung cancer is the most common cancer and 
the leading cause of cancer-related death around 
the world, resulting in more than one million 
deaths annually [1]. In contrast to the advances in 
survival for most cancers, lung cancer presents a 
relative poor prognosis with the 5-year survival of 
18%, partially due to late-stage detection and in-
efficient late-stage treatments [2]. Approximately, 
80% of patients with lung cancer have NSCLC [3]. 
Currently, treatment of NSCLC is mainly based on 
histopathologic characteristics and disease stage, 
while patients with similar pathological features 
and comparable stages usually present various 
responses to the same treatment. Numerous re-

ports have indicated that the combination of en-
vironmental exposure and genetic susceptibility 
contribute to oncogenesis [4-8]. It is predicted 
that molecular therapeutics might be an effec-
tive approach for the prevention and treatment of 
lung cancer. 
 Current advances in high-throughput tech-
nologies enable investigators to reveal the mo-
lecular genetic characteristics of lung cancer [9-
11]. Numerous studies have reported very clear 
influences of individual genes [12], functional 
pathways [13] and PPIs [14] on the development 
of disease. In particular, biological pathways in 
human cell function together in a highly orches-
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trated manner, while most studies consider the 
pathways as independent mechanisms from the 
different expressed genes [15], but do not exam-
ine the relationship among pathways, which is 
referred to cross-talk. A cross-talk among gene 
pathways can be a regulatory interaction among 
different pathways or can express the gene over-
lap among pathways [16]. It better describes phe-
notype differences from the pathway interaction 
viewpoint in contrast to the traditional individual 
genes. Our previous study has focused on path-
way cross-talks associated with NSCLC using a 
Monte Carlo cross-validation method [17]. Addi-
tionally, network analysis characterizes the intri-
cate interwoven relationships that govern cellu-
lar functions, strongly explaining the molecular 
processes during disease development and pro-
gression. The combination of pathway and net-
work analyses could be considered as an effective 
approach to explore the underlying mechanism of 
disease.
 In this research, we utilized the pathway cross-
talk analysis to detect key pathways in NSCLC 
by combining known pathway data and network 
data. This work explored the pathway regulatory 
interactions in the development of NSCLC, giving 
insights to the pathological mechanism and new 
therapeutic target.

Methods

Data recruitment

Microarray data 

 In this work, the microarray expression profile of 
human NSCLC and normal controls was recruited from 
ArrayExpress database, a publicly available repository, 
under the access number of E-GEOD-19188 [18]. A total 
of 156 samples existed in E-GEOD-19188 dataset, in-
cluding 91 NSCLC cases and 65 adjacent normal lung 
tissue samples. Subsequently, the expression data were 
screened by discarding duplicated probes, and the pre-
processed probe level dataset was converted into gene 
symbol measures. 

Pathway data

 The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (http://www.genome.jp/kegg/) is a 
well-known publicly accessible pathway database, 
which contains a collection of manually drawn pathway 
maps for metabolism, genetic information processing, 
environmental information processing such as signal 
transduction, various other cellular processes and hu-
man diseases [19,20]. In the present study, a total of 
300 human biological pathways (covering 6919 genes) 
were downloaded from KEGG database, referred to as 
background pathways. 

PPI data 

 The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING, http://string-db.org/) database 
provides a comprehensive, yet quality-controlled col-
lection of protein association data for a large number 
of organisms [21]. In this work, all human PPIs were 
downloaded from STRING, including 1,048,576 interac-
tions. After removing self-loops and duplicated interac-
tions, a total of 787,896 interactions (covering 16,730 
genes) were included for further analysis, which was 
referred to as background PPI network.

Background pathway cross-talks

 In biological systems, pathways function together 
in a highly coordinated manner in order to respond ap-
propriately to various stimuli. Herein we assumed that 
if more PPIs could be detected between two pathways 
than expected by chance, these two pathways were in-
clined to interact with each other, that is to say, these 
two pathways had a cross-talk. In order to reveal the 
functions of pathways in cells, we firstly investigated 
the cross-talks of all background pathways. Based on 
this hypothesis, pathway interactions were explored by 
systematically combining both pathway data and PPI 
network data. A total of 300 KEGG human pathways 
(covering 6919 genes) were recruited in this work. In a 
given pathway, if a gene had interactions, we counted 
the number of interactions and randomly drew a gene 
form PPI data which interacted with the same number 
of genes, and then replaced the original one with the 
randomly selected one. Once both pathways were ran-
domized, a cross-talk was produced. Combining both 
pathway data and PPI network data mentioned above, 
we calculated background distribution of protein inter-
action count number of each pathway pair, and con-
structed the background pathway cross-talk network, 
in which the interaction count of each pathway pair 
was defined as the weight value of a cross-talk. In our 
study, this randomization was repeated 10000 times. 
The detailed procedure was similar to a previous study 
of Li et al. [22]. 

Disease pathway cross-talks

 To investigate the disease pathway cross-talks, two 
steps were implemented: firstly, we identified the dif-
ferential pathways in NSCLC using the attract method; 
secondly, we constructed disease pathway cross-talks 
based on differential pathways.

Differential pathways 

 The attract method, a knowledge-driven analytical 
approach for identifying and annotating the gene-sets, 
was applied to explore differential pathways in NSCLC 
[23]. To facilitate a screening process, two steps were 
implemented to narrow the number of pathways to a 
reasonable number of final candidates. One was to in-
tersect the genes in the KEGG pathways with  gene 
expression profile of NSCLC and retain the common 
genes for further analysis; the other was to remove 
the pathways with less than 5 genes or more than 100 



Pathway cross-talks in non-small cell lung cancer1254

JBUON 2017; 22(5): 1254

genes, because pathways with too many genes might 
be too generic and pathways with too few genes may 
not have sufficient biological content [22]. In detail, the 
KEGG pathways based on genes in expression profile 
were obtained based on the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) [24]. 
A Fisher’s (F) exact test was performed to identify the 
core pathways, for gene i, F(i) was computed:

where j represented the corresponding expression value 
in each replicate sample; rk for each cell type k=1,…, K; 
y stood for the mixed effect model; N meant the total 
number of samples. Large values of the F-statistic in-
dicated a strong association whereas a small F-statistic 
suggested that the gene demonstrated minimal cell 
type-specific expression changes. To make the F-sta-
tistic more confident, we selected T test to correct the 
log2-transformed F-statistic and obtain p value for each 
pathway. Adjusting the p values on the basis of false 
discovery rate (FDR) [25], we arranged the pathways in 
descending order of p values. In this article, we defined 
the pathways as differential pathways under the p value 
< 0.05. 

Disease pathway cross-talks 

 Unlike background pathway cross-talk network, 
the disease pathway cross-talk network was based on 
the differential pathways we identified. The screen of 
cross-talks among differential pathways was similar to 
that of background pathways. To identify the disease 
pathway cross-talks, we calculated the weight value 
for each cross-talk. For each cross-talk, its weight val-
ue was defined as the total absolute different value of 
Spearman correlation coefficient (SCC) between NSCLC 
and normal controls. To determine the threshold value, 
the null hypothesis was that the ratio of true interac-
tions between two pathways to all possible interactions 
was the same as the ratio of random interactions to all 
random interactions. We randomly extracted the genes 
number of G1, G2 from the expression profile, where 
G1, G2 represented the length of two pathways, respec-
tively. Moreover, we performed the PPI analysis for the 
G1, G2 genes. If they had interactions, we calculated the 
weight value of these two pathways. If not, we defined 
it as zero. A randomized analysis of 10000 times was 
performed, and the corresponding 10000 weight values 
were obtained. We adjusted the  weight value using 
Benjamini-Hochberg FDR-based method [25] to obtain 
the adjusted p value. In this work, we only focused on 
cross-talks with adjusted p < 0.01, and constructed the 
disease pathway cross-talk network.

Key pathways

 In order to gain the critical tumorigenic path-
ways, rank product (RP) algorithm [26], a simple yet 
powerful meta-analysis tool to detect differentially ex-
pressed genes between two experimental conditions, 
was implemented to perform analysis on the two net-

works. In this work, let U and V stand for two condi-
tions (NSCLC vs controls), and there were nU and nV 
replicates in background pathway cross-talk network, 
mU and mV in disease pathway cross-talk network. The 
RP for each cross-talk was determined according to the 
following formula:

where rsi stood for the rank of s th gene under i th com-
parison, i = 1, …, T. The pathways of whose RP value 
was < 0.01 were considered as significant pathways.
 Meanwhile, we conducted the topology analy-
sis [27] for two pathway cross-talk networks to deep-
ly investigate the significance of hub cross-talks. The 
topology analysis mainly contains degree, closeness, 
betweenness and transitivity, in which degree quanti-
fies the local topology of each node by summing up 
the number of its adjacent nodes [28]. It gives a simple 
count of the number of interactions of a given node and 
is particularly useful to identify key players in biologi-
cal processes.
 Additionally, the impact factor (IF) was consid-
ered to determine the importance of pathways. For an 
arbitrary pathway x, pD represented the degree value 
of pathway x in disease pathway cross-talk network, 
and pA represented the p value according to the Attract 
method. The IF of pathway x was calculated according 
to the following formula:

 In the present study, the pathways under pA < 0.01, 
RP value < 0.01, as well as IF > 140 were considered as 
hub pathway.

Results 

Background pathway cross-talk network 

 In this study, we collected a total of 787,896 
PPI interactions (covering 16,730 genes) from 
STRING database and 300 human pathways (cov-
ering 6919 genes) from KEGG database. Combin-
ing pathway data with PPI data, a total of 42239 
cross-talks were produced among 300 background 
pathways, as shown in Figure 1. The background 
pathway cross-talk network was regarded as a 
graph in which nodes were pathways and edges 
represented the cross-talk between pathways. In 
this network, there were great overlaps among 
any two cross-talks, indicating the small differ-
ence between NSCLC and normal controls. The 
total degree distribution also gave proof for the 
great overlaps (Figure 2). Moreover, edges be-
tween two pathways with significant gene overlap 
were considered as not informative and were re-
moved from the network. 
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Disease pathway cross-talk network

 In order to discover cross-talks among differ-
ent biological activities in NSCLC, disease path-
way cross-talk network was constructed. After 
removing pathways with the number of genes < 
5 and > 100, a total of 283 pathways remained. 
Pathways under the adjusted p value <0.01 were 
used to generate the disease pathway cross-talk 
network (Figure 3). The degree distribution of 
pathways in disease pathway cross-talk network 
was different from that in the background path-
way cross-talk network (Figure 2). In disease net

work, the degree was decentralized relative to that 
in the background network. The density was high-
est during the degree around 200 and 300 in the 
background and the disease pathway cross-talk 
networks, respectively. This might give a hand for 
exploring different cross-talks between lung can-
cer and normal controls.

Key pathways

 In order to identify significant cross-talks in 
pathway networks, RP algorithm in R was imple-
mented. Under the threshold of RP <0.01, a total 
of 15 significant pathways were detected. After the 
topology analysis for two networks, the degree 
of each pathway was obtained. Under pA < 0.01, 
RP value < 0.01, as well as IF > 140, a total of 5 
key pathways were identified, including Alanine 
(IF=187), DNA replication (IF=220), Fanconi ane-
mia pathway (IF=144), Cell cycle (IF=204) and 
MicroRNAs in cancer (IF=203). The results are 
shown in Table 1. These key pathways affected 
many other pathways and showed more important 
roles in the process of disease. Furthermore, the 
key cross-talks for key pathways were identified, 
as illustrated in Figure 4.

Pathway p value of 
attractor RP value IF

Alanine 0.0001 0.0016 187

DNA replication 0.0083 0.0032 220

Fanconi anemia pathway 0.0001 0.0049 144

Cell cycle 0.0023 0.0029 204

MicroRNAs in cancer 0.0050 0.0068 203

RP: rank product, IF: impact factor

Table 1. Key pathways in non-small cell lung cancer

Figure 1. Background pathway cross-talk network for 
non-small cell lung cancer. Nodes stood for background 
pathways, edges were the cross-talks among pathways. 
The yellow nodes represented the key pathways.

Figure 2. Total degree distribution for background path-
way cross-talk network and disease pathway cross-talk 
network. The red line represents background condition, 
the blue line represents disease condition.

Figure 3. Disease pathway cross-talk network for non-
small cell lung cancer. Nodes stood for background path-
ways, edges were the cross-talks among pathways. Yellow 
nodes represent the key pathways.
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Discussion 

 NSCLC is a major public health problem 
worldwide and causes a great number of cancer-
related deaths. There is therefore an urgent need 
to develop novel treatments that do not depend on 
conventional pharmacological approaches. Bio-
logical pathway regulation is complex, yet it un-
derlies the functional coordination in a cell. Cancer 
is a disease that is characterized by unregulated 
growth, driven by underlying pathway deregula-
tion. This pathway deregulation is both within 
pathways and between pathways. In this study we 
detected the functional pathways using pathway 
cross-talk analysis. This method has an advantage 
that it focuses on the collective behavior of path-
ways instead of individual pathways. In our study, 
5 key pathways were selected based on pA<0.01, 
RP value <0.01, as well as IF>140, including 
Alanine, DNA replication, Fanconi anemia pathway, 
Cell cycle and MicroRNAs in cancer. These findings 
can also be used to improve the efficacy evaluation 
of specific interventions on lung cancer therapy. 
 Cell cycle is a series of coordinated proce-
dures, which exerts important roles of integrating 
the environment signal pathways with cell prolif-
eration and cell growth [29]. It is a vital process 
by which a single-celled fertilized egg develops 
into a mature organism, as well as the process 
by which hair, skin, blood cells, and some inter-
nal organs are renewed [30]. The events of the cell 
cycle of most organisms are ordered into depend-
ent pathways in which the initiation of late events 
is dependent on the completion of early events 
[31]. A deregulation of the cell cycle components 
may lead to tumor formation [32,33]. Relevant re-
searches have reported that cell cycle regulates 

the liver cancer [34,35]. Moreover, recent stud-
ies also showed that cell cycle was related to the 
development and progress of lung cancer [36,37].  
We further showed proof-of-concept evidence that 
the cell cycle pathway was a crucial biomarker in 
lung cancer in our study.
 DNA replication is the process of producing 
two identical replicas from one original DNA mol-
ecule. This biological process occurs in all living 
organisms and is the basis for biological inherit-
ance. At present, DNA replication was shown to be 
related to a variety of diseases. For example, de-
fects in mitochondrial DNA replication can cause 
mitochondrial genetic diseases in humans due to 
mitochondrial DNA deletions, point mutations, or 
depletion which ultimately cause loss of oxidative 
phosphorylation [38]. DNA replication stress can 
be a key element of the pathogenetic cascade ex-
plaining the interplay between ectopic cell cycle 
events and genetic instabilities in the Alzheimer’s 
brain [39]. The regulation of DNA replication can 
influence the development of breast cancer [40]. 
Moreover, a recent study has pointed out that the 
change of DNA replication was related to lung can-
cer [41], which was consistent with our results. 
 Moreover, the other three key pathways were 
also reported to be associated with the progres-
sion of lung cancer. The Fanconi anemia pathway 
plays essential roles in response to DNA dam-
age in cancer cell lines, and deficiencies in Fan-
coni anemia pathway could be considered as a 
predictor for personalized therapeutic treatment 
in patients with lung cancer [42-44]. MicroRNAs 
regulate target gene expression through transla-
tion repression or mRNA degradation. In NSCLC, 
many miRNAs have been proven to regulate the 
process of oncogenesis, such as miR-21 [45], miR-
1254 [46]. This study demonstrated the presence 
of major alterations in the pathway of hepatic 
gluconeogenesis in weight-losing lung cancer pa-
tients. Moreover, previous studies also indicated 
that aberrant alanine metabolism was involved in 
the weight loss of lung cancer patients [47]. Taken 
together, these observations supported the con-
clusion that these hub pathways provided the tar-
gets to prevent and treat NSCLC.
 In summary, we successfully revealed the 
disease pathway cross-talks and identified 5 key 
pathways in NSCLC, which might be responsible 
for the development and progress of NSCLC. Tar-
geting these cross-talks may be an important new 
strategy for overcoming lung cancer.
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Figure 4. The cross-talk network of key pathways in non-
small cell lung cancer. Nodes were hub pathways, and 
edges stood for hub cross-talks among hub pathways. The 
width of edges represents the correlated strength between 
two hub pathways.
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