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Summary

In the constant battle against cancer cells, macrophages are 
of great importance. Their activation is achieved through 
various mechanisms such as Vitamin D binding protein 
(VDBP or Gc). After undergoing modifications via enzymes 
secreted by stimulated lymphocytes, VDBP is modified into 
Macrophages Activator Form/Factor (Gc-MAF). Some stud-
ies (particularly those focusing on cancer) have reported 
that an enzyme known as α-N-acetylgalactosaminidase 
(nagalase) facilitates the deglycosylation of Gc-MAF, which 

in turn inhibits the activation of macrophages. The aim of 
this review was to evaluate studies associated with nagalase 
and its escalation in various diseases and to propose hypo-
thetical solutions in order to neutralize the effects of na-
galase in cancer patients.
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Introduction and background

 Macrophages play a key role in the fight 
against cancer cells but only following a complex 
activation mechanism. After being modified by 
sialidase and galactosidase, respectively secret-
ed by T and B lymphocytes, Vitamin D binding 
protein (also known as Gc Globulin, Gc Protein 
and D Binding Protein) acquires the ability to 
activate macrophages; this form is referred to as 
Gc-MAF (Group specific component macrophage 
activating factor) [1,2]. This 56kD member of the 
albumin super-family is secreted by the liver and 
promotes the superoxide generating capacity of 
macrophages [2], increases general and antibody-
dependent phagocytic ability and also induces 
translocation of FcgR1 and FcgR2 receptors [3]. 

Gc-MAF’s anti-tumor effects include anti-angio-
genic properties [4], adjuvant effects, osteoclast 
activation, facilitation of chemotaxis (with the 
help of C5 derived peptide) and the scavenging 
of circulating G-actin [5]. Vitamin D binding pro-
tein has been proven to affect host susceptibil-
ity to many diseases, including but not limited 
to chronic obstructive pulmonary disease (COPD) 
[6], endometriosis [7], osteoporosis [8], autism [9],  
systemic lupus erythematosus (SLE) [9] and mul-
tiple types of cancer such as melanoma [10], squa-
mous cell carcinoma [11] and oral cancer [12]. In 
most cases GcMAF degradation was mediated by 
an enzyme called α-N-acetylgalactosaminidase 
(nagalase).



α-N-acetylgalactosaminidase and cancer 1373

JBUON 2017; 22(6):1373

Nagalase: Structure & Function

 Increased serum levels of nagalase have 
been reported in many cancer patients, therefore 
it has been suggested that this enzyme is re-
sponsible for the deglycosylation of Gc-MAF [13] 
(Figure 1). Even though the intracellular (lysoso-
mal) form of nagalase is vital for proper hepatic 
cell function, the extracellular form (secreted by 
cancer cells) seems to only benefit the progres-
sion of cancer [14]. The lysosomal form acquires 
optimal activity in acidic environment (pH~5) 
but the extracellular form functions in plasma 
pH levels, approximately 7.4 [8]. It has not been 
clarified if the structure of circulating nagalase is 
the same as the natural lysosomal form. It may 
be that differences in its active site, carboxylic 
or aminic-ends, its glycosylated side branches or 
the addition of a cofactor/chaperone causes this 
newfound ability to function in plasma pH lev-
els [14]. Also needing clarification is the mecha-
nism of how nagalase is secreted. Cancer cells 
may possess the ability to modify the structure 
of the enzyme to facilitate its secretion. Profound 
evidence of the role of O-Linked connections be-
tween adjacent cancer cells or between cancer 
cells and the extracellular matrix (ECM) exist. 
Based on the role of nagalase in glycoprotein 
destruction, as well as the type of cell-cell/cell-
ECM connections, nagalase can be considered as 
an important biomarker in cancer.

Nagalase as a cancer biomarker/treatment 
prognosis marker

 Previous studies have shown increased plas-
ma levels of nagalase in many types of cancer 
(Table 1). Yamamoto and colleagues reported 
this increase for the first time in various types 
of cancer patients in 1996 [15], and this increase 
was later confirmed in multiple studies by other 

authors [11,16]. Further studies showed a cor-
relation between increased nagalase and the 
pathogenesis of cancer cells in cell cultures and 
animal models [14]. Plasma nagalase levels are 
affected by many different factors including the 
cancer type and its severity, metastatic ability, if 
the tumor is primary or recurrent, and also the 
chosen cancer therapy regimen [12,16]. In most 
cases, cancer therapy causes reduced plasma na-
galase levels in a variety of cancers. In a study 
performed by Thyer and colleagues, the plasma 
nagalase levels were almost halved. Today the 
strategy of many promising cancer therapies are 
to increase Gc-MAF levels and in doing so, hoping 
to reduce plasma nagalase. Although administra-
tion of intravenous Gc-MAF is a yet unapproved 
therapy, due to prior evidence of its success it 
is performed by some practitioners around the 
world [17]. 
 According to some articles and research cent-
ers, the recommended reference range of nagalase 
in the serum of healthy people is between 0.32 
and 0.95 nM/min/mg of substrate, although in 
some articles the normal range is slightly lower 
(up to 0.65nM/min/mg). Certainly more research 
is required to ascertain a universal and reliable 
normal threshold.

Nagalase in cancer cell lines

 A few studies have investigated the level of 
nagalase in cancer cell lines and their results 
indicate that values differ in various cell lines. 
Despite normal levels in fibroblasts and ke-
ratinocytes such as the human embryonic lung 
fibroblasts (HEL299), human gingival fibroblasts 
(HGF) and human gingival keratinocytes (HGK), 
elevated levels of nagalase were seen in human 
salivary gland adenocarcinoma cell lines (HSG) 
and squamous cell carcinoma cell lines (SCCTM) 
[18,19].

Figure 1. The cascade forming Gc-MAF from Gc protein and its destruction by Nagalase.
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Nagalase in microorganisms

 There is abundant evidence in favor of the 
presence and role of the nagalase in different 
pathogens. The pathogenesis of some viruses 
such as Influenza [20], HIV [21] or Herpes Simplex 
Virus-HSV [22] is attributed to nagalase. There is 
evidence of this enzyme playing a crucial role in 
various bacteria, especially in Intestinal Micro-
biota such as Bifidobacterium spp. (particulary B. 
longum) [23], Streptococcus mitis [24] or S. pneumo-
nia [25], Enterococcus faecalis [26], enterobacteria 
spp. [27], Pseudomonas aeruginosa [28], Paenibacil-
lus spp. [29], and emphatically Clostridium perfrin-
gens [30] and others. The use of nagalase for ECM 
destruction has been proven in trophozoites of 
Entamoeba histolytica [32], although nagalase has 
been seen in other parasites too, such as Toxoplas-
ma gondii [33], Giardia lamblia [34], Schistosoma 
mansoni [35], Clonorchis sinensis [36] and even in 
a type of mosquito, Phlebotomus papatasi [37]. Al-
though research about the presence of nagalase in 
fungi is limited, some studies show its presence 
in Aspergillus spp. (especially A. Niger) [38], Penicil-
lium oxalicum [39], Streptomyces spp. [40] and Acre-
monium spp. [41]. Some studies have discovered 
an analog or similar enzyme to nagalase beta-N-
acetylgalactosaminidase in Bacillus spp. [42] Based 
on the abundant evidence indicating the presence 
of nagalase in different pathogenic organisms, ad-
ditional studies need to clarify its exact mecha-
nism of action.

Hypothesis

Reduced expression of nagalase

 Gene silencing is one of the many categories 
of gene therapy and has proven to be a field of 
increased importance in previous decades. How-
ever the occurrence of unexpected side effects has 
caused it to not yet be a globally approved treat-
ment. Gene silencing can be achieved through 
siRNA or shRNA or crisper-cas9, but these meth-
ods are still limited to research laboratories and 
have not yet found their place in clinical therapy 
[43,44]. We predict that with the use of gene si-
lencing methods, reduced expression of nagalase 
and consequently reduced cancer cell invasion ca-
pability can be achieved. The most probable op-
tion using this method would be with the help 
of siRNA/shRNA targeted for the NAGA gene, its 
enhancer or a hypothetical sequence that enables 
nagalase to be secreted.

Enzyme inhibition

 In the case that a new pseudo-substrate (a 
glycoprotein with an α-N-acetylgalactosamine 
branch) could be presented to nagalase as a com-
petitive/alternative inhibitor, the decoy could re-
duce the deglycolysation of Gc-MAF. The same 
idea lies behind the current IV administration Gc-
MAF, albeit with greater financial cost. Maybe a 
non-competitive or uncompetitive enzyme inhibi-
tor could be used to reduce nagalase activity as 

References Year Disease (number of patients) Nagalase concentration in serum (nM/min/mg)

Pre-treat. (±SD) Post-treat. (days/or NG)

Yamamoto et al [48] 1995 HIV-infected patients (14) 3.47 (±3.8) 0.24 (NG)

Yamamoto et al [15] 1996 Various types of cancer (20) 1.76 (±1.1) 0.23 (NG)

Koga et al [49] 1996 Malignant tumors (11) 3.35 (NM) 0.24 (NG)

Yamamoto et al [13] 1997 Systemic Lupus Erythematous-SLE (33) 1.78 (±0.97) 0.29±0.10 (NG)

Yamamoto et al [12] 1997 Oral cancer with squamous cell carcinoma (36) 3.03 (±2.01) 0.29±0.1 (NG)

Reddi et al [11] 2000 Uterine cervical cancer as squamous cell 
carcinoma-SCC (210)

2.67 (NM) 1.13 (NM)

Nakagawa et al [50] 2003 HIV-infected patients (12) NM Decrease

Yamamoto [20] 2005 Acute influenza in the third day (4) 1.73 (±0.17) 0.50±0.05 (60)

Yamamoto [21] 2006 HIV-infected patients (24) 5.37 (±2.91) 0.23 (NG)

Yamamoto et al [51] 2008 Non-anemic prostate cancer (16) 3.57 (±0.93) <0.68 (175)

Greco et al [10] 2009 Melanoma in stage III (35) > 8 (NM) <4 (NM)

Bradstreet et al [9] 2012 Autism spectrum disorders-ASD (40) 1.93 (±1.21) 1.03±0.67 (~100)

Thyer et al [17] 2013 Advanced neoplasms (20) 2.84 (±0.26) 1.59±0.17 (263±45)

Gulisano et al [52] 2013 Various types of cancer (20) 2.84 (±0.26) 1.59±0.17 (7)

NG: normal group, NM: not mentioned

Table 1. Studies showing serum nagalase levels in patients with various diseases
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Ayers and colleagues have suggested [45]. Also, 
changes in the post-translation phase may be ef-
fective such as chaperone manipulation [46].

Therapeutic and metastasis tracing monoclonal 
antibodies

 Synthesis of a monoclonal antibody against 
plasma nagalase could offer major benefits, in-
cluding the ability to increase the susceptibility 
of nagalase to be identified, presented and elimi-
nated by the patient’s immune system. In the case 
that these antibodies are labeled, distant and local 
metastasis could be discovered (previous studies 
have shown the highest levels of nagalase can be 
located around cancer cells), therefore likely ben-
efits could include faster and more effective detec-
tion and treatment of metastatic sites. On the other 

hand, based on this and the fact that nagalase pre-
fers an acidic environment, if pH could be locally 
increased around such sites, loss of enzyme func-
tion could be achieved. This local inhibition would 
be especially effective in synergy with IV adminis-
tration of Gc-MAF [47] or in conjunction with tar-
geted chemotherapy (nagalase antibody attached 
liposomes transporting chemotherapy drugs).
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