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 Summary

Purpose: The tumorigenesis of gastric cancer is an intricate 
process which contains genetic and epigenetic changes of 
proto-oncogenes and cancer-suppressor genes. The purpose 
of this study was to identify novel modules for gastric can-
cer based on protein-protein interaction networks and gene 
expression data.

Methods: Microarray data and corresponding annotated 
files of E-GEOD-15460 were downloaded from ArrayEx-
press database. All human protein-protein interactions were 
downloaded from STRING database. The fast depth-first 
assay was used to identify all maximal cliques of disease 
group and control group. Benjamini-Hochberg method was 
used to perform multiple corrections of p value.

Results: 248 modules for the control group and 30 modules 
for the disease group were determined in this research, and 
734 pairs of similar or same modules of these two groups 
were detected through calculating module correlation densi-
ty. Protein-protein interaction (PPI) network was identified, 
which comprised of 7899 genes and 48469 interrelationship 
pairs of genes. Finally, 6 modules with remarkable difference 
were found to be closely related with gastric cancer.

Conclusions: Novel modules with significant difference 
and the related genes are useful biomarkers and therapeutic 
targets for gastric cancer.
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Introduction

 The tumorigenesis of gastric cancer (GC) is an 
intricate process which contains genetic and epi-
genetic changes of proto-oncogenes and cancer-
suppressor genes [1]. GC is the fifth most common 
cancer in the world, with 984,000 cases registered 
in 2013 worldwide [2]. Moreover, GC ranks second 
in mortality, with 841,000 deaths in 2013 [3]. The 
incidence varies widely among countries, and in 
the developed countries it accounts for 23%, while 
in the developing countries this figure is 77% [4]. 
Because alcohol may increase the risk of GC and 
estrogen lowers the risk of GC, men are more likely 
to suffer GC than women [5,6]. Therefore, there is 

an urgent need to explore the underlying mecha-
nisms of GC tumorigenesis. 
 According to histogenesis, GC can be divided 
into two main types: intestinal type and diffuse type 
[7]. Intestinal type GC is often caused by factors of 
regional environment, dietary habits and infection 
by helicobacter pylori (H. pylori) [8]. And diffuse type 
GC is often controlled by genetic alterations, such 
as chromosome deletion, duplication, inversion 
and translocation [9]. Marshall and Warren firstly 
demonstrated that H.pylori was a main cause for 
antral gastritis, duodenal and gastric ulcers [10]. 
Parkin reported that more than half of the popu-
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lation worldwide were infected with H.pylori [11], 
and H.pylori led to more than 75% occurrence of GC 
cases [12]. 
 Up to now, there have been various types of 
molecular targeted therapies for GC, as an ATP-de-
pendent molecular chaperone protein, Heat-shock 
protein 90 (HSP90) was found to regulate folding 
and assembly of various proteins [13,14]. Further-
more, Liu et al. reported that ganetespid acting as 
a strong inhibitor of HSP90 regulated G2/M cell-
cycle arrest and cell apoptosis in MGC-803, SGC-
7901 and MKN-28 GC cell lines [15]. Mammalian 
target of rapamycin (mTOR) is negatively related to 
disease-free survival of patients with lymph node 
metastasis [16]. Aurora-A encoding threnonine/
serine kinases had been reported to play an im-
portant role in mitosis and tumor progression 
[17] and could be used to diagnose patients with 
worse outcome [18]. In addition, the novel path-
ways and biomarkers could be identified through 
analysis of PPI networks, which also can deepen 

the understanding of underlying mechanisms of 
tumorigenesis. It was reported that SOX2, USP15, 
YWHAE and DISC1 were involved in pancreatic 
carcinogenesis through PPI analysis, gene expres-
sion and mutation data [19]. Moreover, 54 corre-
sponding genes were identified to participate in 
the prognosis of breast cancer by analyzing PPI 
[20]. Additionally, notch and chemokine signaling 
pathways were identified to modulate various pro-
cesses in prostate cancer tumorigenesis [21]. 
 In our study we aimed to identify the molecules 
related with GC, based on the protein-protein in-
teraction networks and gene expression data. With 
new PPI networks significant modules would be 
identified, helping in depth understanding the po-
tential mechanisms involved in GC tumorigenesis.

Methods

 The research method used in this study mainly 
consisted of the following steps (Figure 1):

Figure 1. Flow chart showing overall methods and data flow used in this study.
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Gene expression data processing

 Microarray data and corresponding annotated files 
of E-GEOD-15460 were downloaded from ArrayExpress 
database. ArrayExpress database is affiliated to European 
Molecular Biology Laboratory-European Bioinformatics 
Institute (EMBL-EBI). Three control samples and 227 
disease samples were selected from HG-U133_Plus_2 
to carry out this experiment. 
 Robust multichip average (RMA) was employed to 
correct background. Quantiles assay was used to per-
form data standardization. Expression data summariza-
tion was calculated using medianpolish method. Map-
ping was done between probes and genes.

PPI data

 All human PPIs were downloaded from STRING 
database. Protein IDs were transited into gene symbols 
and PPIs without corresponding gene names were elim-
inated. PPIs were collected if their values of combined 
score were ≥ 0.8. We further selected PPI pair if its node 
was the corresponding gene of expression profiling. 

Identification of network modules

 Pearson correlation coefficient of each pair of the 
new PPI network was calculated, and its absolute value 
was regarded as weight value. Subsequently, the PPI 
network with weight values of control group and dis-
ease group was obtained. 
 The fast depth-first assay [22] was used to identify 
all maximal cliques of two groups. Maximal cliques 
were excluded if their nodes were less than 4 or more 
than 20. 
 Weight interaction density (WID) of each maximal 
clique in the control and disease group was calculated 
and ranked in descending order. Highly overlapping 
cliques were merged into one module. WID was calcu-
lated as follows: 

(p,q) denotes a gene pair, r (p,q) denotes a weight (be-
tween 0 and 1) of one interaction, C denotes a clique. 
 Module correlation density values of control and 
disease groups were calculated to find similar or same 
modules in this study. The module correlation density 
was calculated as follows:

Si represents a set of modules, PCC ((p,q), N) denotes 
Pearson correlation of (p,q) under normal condition.

Construction of differential modules

 Modules with the same genes were chosen from 
two groups to form objective networks. Local entropy 
of each node in each network was calculated as follows:

ki represents degree of node i, N(i) denotes adjacent 
node set of node i, pij represents network random prob-
ability matrix. pij was defined as follows:

cij represents Pearson correlation coefficient between 
protein i and protein j. The global entropy of two groups 
were calculated as follows:

n denotes number of nodes in networks, Ci represents 
degree centrality of node i and Ci was calculated as 
follows:

The difference of global entropy of control and disease 
groups was calculated as follows:

SI and SN denote global entropy of disease group and 
control group, respectively.

Statistics

 Permuted sample labels were used to replicate the 
analysis. Global entropy of control and disease groups 
was recalculated. Benjamini-Hochberg method [23] was 
used to do multiple correction of p value. Modules were 
considered as significant at p<0.05.

Results 

Construction of PPI networks

 Gene data was preprocessed by using RMA, 
quantiles and medianpolish methods, and the 
expression profile containing 20514 genes was 
obtained.
 8590 nodes and 53975 interrelationship pairs 
of genes were obtained by analyzing PPI network. 
Based on these data, a new PPI network containing 
7899 genes and 48469 interrelationship pairs of 
genes was obtained after mapping between genes 
and nodes. 

Identification of gene expression modules

 Through using fast depth-first method, 26416 
maximal cliques in the control and disease groups 
were observed. Moreover, 7951 maximal cliques 
were identified in each group after excluding the 
maximal cliques which were less than 4 or more 
than 20 nodes. 
 The refinement of modules was performed by 
calculating WID values. Subsequently, 248 and 30 
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modules were determined in the control and dis-
ease groups, respectively. 734 pairs of similar or 
same modules of these two groups were obtained 
by calculating module correlation density. 

Construction of objective modules and identification of 
significant differential modules

 In total, 192 objective networks containing 
genes from the control and disease groups were 

identified, and the local entropy of each node in 
every objective network was calculated to obtain 
global entropy. 
 P values of modules were corrected using 
Benjamini-Hochberg method. Finally, 6 modules 
were identified as significant differential modules 
(Figure 2 and Table 1). The nodes of 6 significant 
differential modules ranged from 7 to 9 and edges 
ranged from 21 to 36. Differences of global entropy

Figure 2. Six significant differential modules were identified for GC. A: 8 genes, B: 7 genes, C: 9 genes, D: 8 genes,
E: 7 genes and F: 7 genes formed significant modules related with GC.
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ranged from 0.483 to 2.368. Moreover, we also 
found some highly frequent genes involved in 6 
significant modules.

Discussion 

 In our study, PPI networks and gene expres-
sion data analyses were performed to identify novel 
pathways associated with GC. Six significant dif-
ferential modules were identified for the control 
and disease groups and also some highly frequent 
genes were detected in 6 modules, such as Cell 
division cycle protein 6 (Cdc6), Cell division cycle 
protein 45 (Cdc45), KIF11, Ndc80, CCNB1, GINS2, 
and MCM4. 
 Among them, Cdc45, MCM2-7 and GINS pro-
teins are the three main parts of eukaryotic rep-
licative helicase CMG. Overexpression of Cdc45 
induced an early S phase arrest and significantly 
increased firing rate of replication of Hela cells [24]. 
Cdc45 protein was found to be not involved in the 
cell cycle of proliferating cells and disappeared in 
senescent and terminally differentiated cells. Ini-
tiation of replication was reported to be limited 
through binding with Cdc45 protein [25]. Based on 
these previous studies, we speculated that Cdc45 
level might decrease in GC. However, there were no 
studies about the effect of Cdc45 in GC until now. 
The potential role of Cdc45 in cell cycle suggested 
that it might participate in tumorigenesis of GC. 
 KIF11 had been reported to be overexpressed 
in many human cancers, such as lung cancer, 
breast cancer, pancreatic cancer and ovarian cancer 
[26]. Consistent with the above studies, the KIF11 
expression was also found to be significantly in-
creased in GC tissues compared with normal tis-
sues in a previous study [27]. And KIF11 could act 
as a biomarker for intestinal mucin GC phenotype. 
In the next experiment, we will further investigate 
the potential role of KIF11 in cell proliferation, mi-
gration and invasion in GC.
 As a part of kinetochores, Ndc80 exhibited an 
important role in G2/M phase of the cell cycle dur-
ing mitosis [28]. Moreover, it had been reported 

that upregulation of Ndc80 was identified in GC 
which promoted cell migration and invasion [29]. 
Further research indicated that overexpression of 
Ndc80 caused chromosome instability and imbal-
ance of cell division [29]. Therefore, we speculated 
that Ndc80 could function as a biomarker for treat-
ment of GC. Additionally, Tang et al. reported that 
Ndc80 overexpression could absorb microtubule 
assembling factors, which could interfere with the 
microtubule balance and mitosis by Ndc80 internal 
loop [30]. 
 As a member of cyclin family, CCNB1 is a high-
ly conserved and constitutive expression protein 
[31]. Consistent with our study, CCNB1 had been 
found to be a prognostic biomarker for estrogen 
receptor positive breast cancer [32]. In addition, 
G2/M phase arrest could be induced by inhibition 
of CCNB1 in colorectal cancer and inhibition of 
CCNB1 induced apoptosis of certain type of colo-
rectal cancer cells [33]. More importantly, CCNB1, 
CCNB2 and c-MYC genes could increase GC cell 
proliferation which are regulated by ISL1 [34]. 
These studies confirmed our observations as well. 
However, we found that CCNB1 could regulate GC 
cell proliferation via other transcriptional factors 
as well. According to these findings, we predicted 
that CCNB1 might be significantly increased in GC 
which needs further confirmation.
 GINS consist of four parts: PSF1, GINS2 
(PSF2), PSF3 and SLD5, and GINS were found to 
play a pivotal role in opening double strands of 
DNA ahead of replication fork [35]. Liang et al. 
reported that expression of GINS2 was increased 
in triple negative breast cancer (TNBC) cells and 
knockdown of GINS2 inhibited the cell invasion 
and growth in TNBC [36]. These studies implied 
that GINS2 might be increased and influence the 
GC cell growth. However, the specific function of 
GINS has not been identified in GC. And in the 
further study, we will confirm the above inference 
via biological experiments.
 Minichromosome maintenance-deficient 4 
(MCM4) is a component of MCM2-7 complex, 
which plays an important role in DNA replication 

Modules Change of entropy Number of nodes Number of edges p value

module 1 0.483 8 28 0.014

module 2 1.395 7 21 0

module 3 2.368 9 36 0

module 4 1.327 8 28 0

module 5 0.872 7 21 0.007

module 6 1.263 7 21 0

Table 1. The 6 significant differential modules identified
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and maintenance of chromosome structures. It had 
been reported that MCM4-deficiency led to human 
adrenal insufficiency, NK cell deficiency and short 
stature [37]. We considered that MCM4 might play 
a role in GC initiation and further validation about 
the change in its expression will been investigated 
in our following experiments which has not been 
found in previous studies. 
 In summary, we performed an integrated anal-
ysis by combining PPI networks and gene expres-
sion data for GC. Fast depth-first and Benjamini-
Hochberg algorithm were used to perform data 

analysis. And 6 significant differential modules 
were identified in this study. Moreover, genes of 
these modules play an important role in biological 
processes, such as DNA replication, chromosome 
stability, and adrenal secretion. These differential 
modules and corresponding genes may provide 
outstanding therapeutic targets and biomarkers 
for the treatment of GC.
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