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Summary

Purpose: RANKL, OPG and TRAIL have long been pursued 
in cancer. Mutated KRas proteins and c-Fos overexpression 
– well-recognized oncogenic events – have been conceived as 
coordinators of RANKL, OPG and TRAIL pathways. Con-
sidering the paucity in the relevant literature, the purpose of 
the present study was to investigate whether the expression 
of these molecules configures a distinct papillary thyroid 
carcinoma (PTC) subgroup with adverse clinicopathological 
characteristics.

Methods: RANKL, OPG, TRAIL, KRas, and c-Fos immu-
nohistochemical expression in relation to clinicopathologi-
cal characteristics of PTC was assessed retrospectively in 
paraffin-embedded PTC specimens from 114 patients who 
underwent total thyroidectomy with simultaneous central 
lymph node dissection (CLND).

Results: Expression of RANKL, OPG, TRAIL, Kras and c-
Fos was revealed in 78.6, 63.2, 61.4, 47.4, and 73.7% of PTC, 
respectively. As predominant KRas-expressing PTC histotype 
emerged the classical PTC (cPTC), comprising 66.7% of PTC. 
A significant correlation was demonstrated of RANKL, OPG, 
and TRAIL expression with central lymph node metastasis 

CLNM (p=0.007, p<0.001, and p=0.002, respectively), con-
cerning especially cPTC as regards to RANKL (p=0.027) 
and OPG (p=0.006), and both cPTC (p=0.043) and follicular 
variant of PTC (FVPTC) (p=0.049) with regard to TRAIL. 
OPG expression associated significantly with multifocal-
ity (p=0.045). Multivariable-adjusted logistic regression 
models characterized TRAIL as independent predictor of 
CLNM (OR=10.335, 95% CI: 1.23-86.87). CLNM correlated 
significantly with six pairs of coexpressions: TRAIL-KRas 
(p=0.011), TRAIL-c-Fos (p=0.006), OPG-c-Fos (p=0.024), 
RANKL–TRAIL (p<0.001), RANKL–OPG (p<0.001), TRAIL–
OPG (p<0.001).

Conclusion: The present study suggested for the first time 
that OPG, RANKL, TRAIL expressions, either alone or in 
concert involving c-Fos and KRas expression, are related to 
CLNM. Further research is warranted to elucidate whether 
the examined molecules can be endorsed as indicators of ag-
gressive PTC behavior and guide a personalized therapeutic 
intervention.

Key words: lymph nodes, OPG, RANKL, thyroid carcinoma, 
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Introduction

 Thyroid carcinoma (TC) is the most common 
endocrine malignancy [1], albeit a rare entity ac-
counting for 2.1% of global cancer burden [2]. Pap-

illary TC (PTC) is the most prevalent TC histotype, 
comprising 80% of TC [1] and 85% of differentiated 
TC (DTC) [3], with an incidence increasing world-
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wide over the prior decades [4]. The indolent na-
ture of DTC imposes the endorsement of treatment 
paradigms based on personalized risk assessment 
with focus on recurrence incidence hovering at 
25% [5]. Recently, CLNM have gained prominence 
as the main culprit for not only recurrent [5] but 
also persistent disease, occurring in 20-90% of PTC 
at initial diagnosis [3]. 
 Current guidelines for the management of DTC 
published by the American Thyroid Association 
(ATA) lay the groundwork for a continuum of risk 
stratification integrating the molecular landscape 
of PTC with the clinicopathological profile, thereof 
emphasizing lymph node metastases (LNM) [3], 
launching a realm of intense research. 
 The designation of nuclear factor kB (NFkB) 
as coordinator of TC [6,7] provides the rationale 
for the investigation of receptor activator of NFkB 
(RANK) ligand (RANKL) – a member of tumor ne-
crosis factor (TNF) family – and its decoy receptor 
osteoprotegerin (OPG) – a secreted member of TNF 
receptor family – in PTC [8,9]. A compelling evi-
dence supporting the critical role of RANKL in PTC 
is derived from an innovative pathway analysis 
revealing that the TNF receptor associated factor 
(TRAF)-6-mediated induction of NFkB, a process 
initiated by RANKL, is included among 87 differ-
ential pathways in PTC [10]. Originally conceived 
as the cornerstone of bone milieu [11], the RANKL/
OPG interaction extends beyond the OPG-mediated 
abrogation of RANKL-induced bone resorption. The 
ubiquitous expression of OPG and RANKL deline-
ates an intricate network of cross-talking pathways, 
governing osteoimmunology intertwined with ini-
tiation and progression of cancer [12-17]. 
 TNF-related apoptosis inducing ligand (TRAIL) 
is a member of TNF family, produced by T natu-
ral killers cells, credited with initiating the ex-
trinsic pathway of apoptosis selectively on cancer 
cells, upon interaction with its signaling recep-
tors (TRAILR1, TRAILR2) [18,19]. TRAIL has been 
shown to eliminate in vitro TC cells [20,21], while 
OPG, a decoy receptor for TRAIL, endows not only 
thyroid [22], but also breast [23] and prostate [24] 
cancer cells with a survival advantage. Intrigu-
ingly, a tumor-promoting non-canonical TRAIL-
mediated signaling has been described recently 
[18].
 KRas protein along with NRas and HRas pro-
teins synthesize the p21 Ras family of small p21 
GTP-binding proteins, controlling every aspect of 
cell biology. Oncogenic signal transduction down-
stream of mutated Ras proteins entails the activa-
tion of mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol-3-kinase (PI3K)/Akt path-
ways [25]. While Ras mutations have been consid-

ered as a hallmark of follicular thyroid cancer (FTC) 
[25,26], a distinct profile of PTC harboring Ras mu-
tations has recently emerged [1]. NRas gene is the 
prevailing mutated Ras gene in TC [25]; however, 
KRas gene polymorphisms have been currently 
correlated with increased PTC risk [27]. 
 c-Fos oncoprotein is a member of Fos family 
(c-Fos, Fos-B, Fra-1, Fra-2) heterodimerizing with 
members of Jun and Maf family to form transcrip-
tion factor activator protein 1 (AP-1), integrating 
mitogenic stimuli into oncogenic transcriptional 
programmes [28]. Although c-Fos has been impli-
cated in cancer, including meningioma [29], neu-
rinoma [29], and breast cancer [30], it remains un-
derexplored in PTC.
  Herein, we hypothesized that RANKL, OPG, 
TRAIL, mutated KRas proteins, and c-Fos may con-
figure a distinct group of aggressive PTC and thus 
refine the risk stratification schemes. Pertinent lit-
erature is exceptionally scarce, rendering further 
investigation imperative with the aim to facilitate 
the risk-adapted treatment. In order to test this hy-
pothesis we evaluated the immunohistochemical 
(IHC) expression of the aforementioned molecules 
in correlation with adverse clinicopathological 
characteristics, emphasizing CLNM, as well as with 
coexistence of Hashimoto’s thyroiditis (HT), a char-
acteristic highly controversial and yet an issue of 
burgeoning research [31].

Methods

Study population

 This retrospective study enrolled 114 patients with 
PTC who underwent thyroid surgery at Hippokratio Gen-
eral Hospital of Athens in Greece from 2009 to 2014. 
The study included patients with histologically con-
firmed PTC who underwent total thyroidectomy with 
simultaneous dissection of lymph nodes of the central 
cervical compartment as primary surgery. Central cervi-
cal compartment was defined according to a consensus 
statement [32]. Patients who underwent completion thy-
roidectomy and/or reoperation of recurrent disease were 
excluded. The tumors were classified according to Amer-
ican Joint Committee on Cancer (AJCC) TNM system (7th 
Edn) [3]. Characteristics studied included age, sex, his-
tological PTC subtype, multifocality, capsular invasion, 
CLNM status, coexistence of HT, T stage and TNM stage. 
The study was performed in compliance with the Decla-
ration of Helsinki. The study protocol was approved by 
the Ethics Committee of Hippokratio General Hospital 
of Athens (Reference number 3231.14.2.12).

Immunohistochemistry

 Immunohistochemical (IHC) staining for RANKL, 
OPG, TRAIL, KRas, c-Fos was performed on 2-5 μm-
thick sections from the original formalin-fixed paraffin-
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embedded (FFPE) tissue samples of patients’ tumors 
according to standard protocols. Briefly, the slides 
were placed in oven at 60°C for 60 min and then de-
paraffinized, rehydrated and subjected to heat-induced 
antigen retrieval using a buffer solution (Target Re-
trieval Solution pH=9, Dako). After remaining in the 
buffer at room temperature for 10 min, the slides were 
washed first in running tap water and then in buffer 
solution Tris-Buffered NaCl Solution with Tween 20 
pH=7.6, Dako (TBS). Immunostaining was completed 
using Autostainer, Dako. The slides were incubated for 
60 min with the following rabbit polyclonal primary 
antibodies: anti-RANKL (ab9957 Abcam Cambridge, 
UK, dilution:1/100), anti-OPG (ab73400, Abcam Cam-
bridge, UK, dilution:1/100), anti-TRAIL (ab9959 Abcam 
Cambridge,UK, dilution:1/500), anti-KRas (ab180772, 
Abcam Cambridge, UK, dilution: 1/100), anti-c-Fos (sc-
52, Santa Cruz Biotechnology, Santa Cruz, CA, USA, dilu-
tion:1/100). After applying the endogenous peroxidase 

Figure 1. Cytoplasmic RANKL positive immunostaining 
(magnification ×40).

Figure 2. Cytoplasmic OPG positive immunostaining 
(magnification ×10).

Figure 3. Cytoplasmic TRAIL positive immunostaining 
(magnification ×20).

Figure 4. Cytoplasmic KRas positive immunostaining 
(magnification ×20).

Figure 5. Cytoplasmic c-Fos positive immunostaining 
(magnification ×10).
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blocking reagent Dako, the slides were incubated with 
a peroxidase-conjugated polymer (EnVision™ detection 
system peroxidase/DAB, Dako). Immunoreactions were 
visualized using diaminobenzidine (DAB, Dako) as chro-
mogen. Finally, the slides were washed in dextrose-in-
water solution (DW), counterstained with hematoxyline, 
washed in running tap water, dehydrated, cleaned and 
mounted. The appropriate positive and negative controls 
were also prepared. 

Interpretation of IHC staining

 IHC staining was evaluated by microscopy by two 
expert pathologists. The intensity of staining was scored 
as no staining (0), weak (1+), moderate (2+) and strong 
(3+) and the percentage of positive cells with each in-
dividual staining intensity was assessed visually. A 
semiquantitative scoring system was applied to assess 
IHC expression, evaluating simultaneously the staining 
intensity and the percentage of positive cells, as previ-
ously described [33]. In particular, for each slide, an H 
score, ranging from 0 to 300, was calculated according 
to the following formula: 1x [percentage of cells stained 
weakly(1+)]+2x [percentage of cells stained moderate-
ly(2+)] +3x [percentage of cells stained strongly(3+) [33]. 
 The RANKL, OPG, TRAIL and c-Fos positive expres-
sions were split into high or low expression in refer-
ence to their respective median levels of H scores as 
follows: low expression (0<H score<median H) and high 
expression (H score≥median). KRas IHC expression was 
dichotomized in negative expression (H score=0) and 
positive expression (H score>0). Representative immu-
nostainings of RANKL, OPG, TRAIL, KRas and c-Fos are 
shown in Figures 1-5. 

Statistics

 Statistical analyses were conducted using SPSS 
(IBM Statistical Package for Social Sciences v. 21.0, 
Chicago, IL). Parameter distributions were not normal 
as indicated by Kolmogorov-Smirnov test. Pearson’s chi-
square test, or Fisher’s exact test were used to analyze 
categorical data when the number of cases in a catego-
ry was <10. Multivariable-adjusted logistic regression 
models controlling for sex, age, and T stage were ap-
plied to assess the association between the presence of 
CLNM and the expressions of the examined molecules. 
A p value of less than 0.05 was considered statistically 
significant.

Results 

 The clinicopathological characteristics of the 
study population are depicted in Table 1. The ex-
pression of the studied molecules according to 
histological PTC subtype is presented in Table 2. 
RANKL, OPG, TRAIL, KRas and c-Fos expression 
was observed in 78.6, 63.2, 61.4, 47.4 and 73.7% of 
PTC, respectively. 
 The expression of RANKL, OPG and TRAIL 
demonstrated a significant association with CLNM 
(p=0.007, p<0.001, and p=0.002, respectively; Ta-

bles 3 and 4). To identify the histological PTC sub-
type for which the aforementioned associations 
are significant we analyzed the expression of OPG, 
RANKL and TRAIL according to CLNM status sepa-
rately in classical PTC (cPTC) and follicular variant 
of PTC (FVPTC). Tall cell variant of PTC (TCV PTC) 
was excluded from analysis due to small number 

Characteristics n (%)

Age 

Mean (SD), years 39.27 (13.68)

<45 72 (63.2)

≥45 32 (28.1)

Sex

Male 20 (17.5)

Female 92 (80.7)

Histological PTC subtype

cPTC 76 (66.7)

FVPTC 32 (28.0)

TCV PTC 6 (5.3)

Multifocality

Yes 58 (50.9)

No 54 (47.4)

Capsular invasion

Yes 66 (57.9)

No 48 (42.1)

CLNM status

Positive 54 (47.4)

Negative 60 (52.6)

Hashimoto’s thyroiditis

Yes 70 (61.4)

No 44 (38.6)

T stage

1a 42 (36.8)

1b 26 (22.8)

2 4 (3.6)

3 42 (36.8)

TNM stage 

I 98 (85.9)

II 2 (1.8)

III 14 (12.3)

n: number of patients, PTC: papillary thyroid carcinoma, cPTC: 
classical papillary thyroid carcinoma, FVPTC: follicular variant 
of PTC, TCV PTC: tall cell variant of PTC, CLNM: central lymph 
node metastases

Table 1. Clinicopathological characteristics of the study 
population
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of tumors. The association of RANKL and OPG ex-
pression with CLNM proved to be significant con-
cerning cPTC (p=0.027 and p=0.006, respectively), 
while TRAIL expression associated significantly 
with CLNM in both cPTC (p=0.043) and FVPTC 
(p=0.049) (Table 5). OPG expression correlated sig-
nificantly with multifocality (p=0.045) (Table 4). No 
significant correlation of RANKL, OPG and TRAIL 
with any of the remaining clinicopathological char-
acteristics was observed.
 Neither KRas nor c-Fos expression showed a 
significant association with any of the examined 
characteristics (analytical data not shown). 
 Multivariable-adjusted logistic regression 
models controlling for age, sex and T stage revealed 
a significant correlation of TRAIL expression with 

CLNM (OR:10.335, 95% CI: 1.23-86.87) (Table 6).
 Analyzing the pairs of coexpressions of the 
examined molecules according to CLNM status, 6 
pairs of coexpressions demonstrated a significant 
correlation with CLNM: TRAIL–KRas (p=0.011), 
TRAIL–c-Fos (p=0.006), OPG–c-Fos (p=0.024), 
RANKL–TRAIL (p<0.001), RANKL–0PG (p<0.001), 
TRAIL–OPG (p<0.001) (Table 7).

Discussion 

 Τo our knowledge, the present study demon-
strated for the first time a significant correlation 
of OPG, RANKL, TRAIL, either alone or in coex-
pression implicating KRas and c-Fos expression, 
with CLNM, designating TRAIL as an independent 

IHC expression Histological PTC subtype

CPTC
n (%)

FVPTC
n (%)

TCV PTC
n (%)

Total PTC
n (%)

RANKL

Negative 18 (24.3) 6 (18.8) 0 (0.0) 24 (21.4)

Low 36 (48.6) 8 (25) 2 (33.3) 46 (41.1)

High 20 (27) 18 (56.3) 4 (66.7) 42 (37.5)

Total 74 (97.4) 32 (100) 6 (100) 112 (100)

OPG

Negative 32 (42.1) 10 (31.3) 0 (0.0) 24 (36.8)

Low 14 (18.4) 2 (6.3) 2 (33.3) 18 (15.8)

High 30 (39.5) 20 (62.5) 4 (66.7) 54 (47.4)

Total 76 (100) 32 (100) 6 (100) 114 (100)

TRAIL

Negative 32 (42.1) 12 (37.5) 0 (0.0) 44 (38.6)

Low 22 (28.9) 8 (25) 6 (100) 36 (31.6)

High 22 (28.9) 12 (37.5) 0 (0.0) 34 (29.8)

Total 76 (100) 32 (100) 6 (100) 114 (100)

KRas

Negative 40 (52.6) 16 (50) 4 (66.7) 60 (52.6)

Positive 36 (47.4) 16 (50) 2 (33.3) 54 (47.4)

Total 76 (100) 32 (100) 6 (100) 114 (100) 

c-Fos

Negative 22 (28.9) 6 (18.8) 2 (33.3) 30 (26.3)

Low 22 (28.9) 6 (18.8) 0 (0.0) 28 (24.6)

High 32 (42.1) 20 (62.5) 4 (66.7) 56 (49.1)

Total 76 (100) 32 (100) 6 (100) 114 (100)

IHC: immunohistochemical, PTC: papillary thyroid carcinoma, cPTC: classical papillary thyroid carcinoma, FVPTC: follicular variant 
of PTC, TCV PTC: tall cell variant of PTC

Table 2. IHC expression of molecules according to histological PTC subtype in the study population
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predictor for CLNM in PTC. Moreover, this study 
yielded novel insights into the histological profile 
of KRas-expressing PTC as well as the significant 
association of OPG with PTC multifocality.
 Although RANKL, OPG and TRAIL have long 
been pursued in cancer, only two previous stud-
ies have addressed their expression in malignant 
thyroid tissue [8,9]. 
 Herein, the RANKL expression in PTC revealed 
concordance with the observation of Sood et al. [8]. 
These data build upon the existing literature, sub-
stantiating RANKL expression in various cancer 

types, including breast, prostate, colorectal, lung, 
bladder and gastric cancer [14]. On the contrary, 
Heymann et al. showed no RANKL expression in 
PTC [9]. 
 In contrast with the study of Sood et al. [8], we 
demonstrated a significant association of RANKL 
expression with CLNM, concerning particularly 
cPTC, implying that RANKL promotes the meta-
static process. This finding appears rational, consid-
ering the in vitro and in vivo RANKL-induced migra-
tion of RANK-expressing cancer cells [34] as well 
as the implication of RANKL in epithelial mesen-

Characteristics IHC expression

RANKL TRAIL

Negative 
n (%)

Low 
n (%)

High 
n (%)

p value Negative 
n (%)

Low 
n (%)

High 
n (%)

p value

Age (years) 0.241 0.118

<45 20 (19.6) 28 (27.5) 24 (23.6) 24 (23.1) 30 (28.8) 18 (17.3)

≥45 2 (2) 14 (13.7) 14 (13.7) 16 (15.4) 4 (3.8%) 12 (11.5)

Sex 0.577 0.775

Male 2 (1.8) 10 (9.1) 8 (7.3) 6 (5.4) 8 (7.1) 6 (5.4)

Female 22 (20) 34 (30.9) 34 (30.9) 38 (33.9) 28 (25) 26 (23.2)

CLNM status 0.007 0.002
Negative 22 (19.6) 20 (17.9) 16 (14.3) 36 (31.6) 14 (12.3) 10 (8.8)

Positive 2 (1.8) 26 (23.2) 26 (23.2) 8 (7) 22 (19.3) 24 (21.1)

Histological PTC subtype 0.256 0.107

cPTC 18 (16.1) 36 (32.1) 20 (17.9) 32 (28.1) 22 (19.3) 22 (19.3)

FVPTC 6 (5.4) 8 (7.1) 18 (16.1) 12 (10.6) 8 (7) 12 (10.6)

TCPTC 0 (0) 2 (1.8) 4 (3.6) 0 (0) 6 (5.3) 0 (0)

Multifocality 0.078 0.265

No 18 (16.4) 16 (14.5) 20 (18.2) 26 (23.2) 12 (10.7) 16 (14.3)

Yes 6 (5.5) 30 (27.3) 20 (18.2) 18 (16.1) 24 (21.4) 16 (14.3)

Capsular invasion 0.725 0.497

No 8 (7.1) 20 (17.9) 20 (17.9) 18 (15.8) 12 (10.5) 18 (15.8)

Yes 16 (14.3) 26 (23.2) 22 (19.6) 26 (22.8) 24 (21.1) 24 (21.1)

Hashimoto’s thyroiditis 0.943 0.633

No 8 (7.1) 18 (16.1) 16 (14.3) 18 (15.8) 16 (14) 10 (8.8)

Yes 16 (14.3) 28 (25) 26 (23.2) 26 (22.8) 20 (17.5) 24 (21.1)

T stage 0.379 0.476

1a 6 (5.4) 18 (16.1) 16 (14.3) 20 (17.5) 8 (7) 14 (12.3)

1b 10 (8.9) 10 (8.9) 6 (5.4) 6 (5.3) 10 (8.8) 10 (8.8)

2 0 (0) 0 (0) 4 (3.6) 2 (1.8) 0 (0) 2 (1.8)

3 8 (7.1) 18 (16.1) 16 (14.3) 16 (14) 18 (15.8) 8 (7.0)

TNM stage 0.681 0.183

I 20 (17.9) 42 (37.5) 34 (30.4) 36 (31.6) 36 (31.6) 26 (22.8)

II 0 (0) 0 (0) 2 (1.8) 0 (0) 0 (0) 2 (1.8)

III 4 (3.6) 4 (3.6) 6 (5.4) 8 (7) 0 (0) 6 (5.3)
p values depicted in bold denote statistical significance. IHC: immunohistochemical,PTC: papillary thyroid carcinoma, cPTC: classi-
cal papillary thyroid carcinoma, FVPTC: follicular variant of PTC, TC: tall cell variant of PTC, CLNM: central lymph node metastases

Table 3. Correlation of IHC expression of RANKL and TRAIL with clinicopathological characteristics
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chymal transition (EMT), angiogenesis [35], cancer 
cell migration and invasion [36]. Our data endorse 
the current literature sustaining the aggressive 
phenotype of various RANKL-expressing cancer 
types, involving prostate cancer [37], hepatocellu-
lar cancer [38] and osteosarcoma [39]. Consistent is 
the notion that RANKL, produced either by cancer 
cells or tumor microenvironment, consolidates the 
“seed and soil” concept of metastasis [14]. As the 
mechanistic underpinning of the prometastatic po-
tential of RANKL could be conceived the activation 
of crucial kinases, including PI3K/AKT/mammalian 

target of rapamycin (mTOR) and MAPK [p38, c-Jun 
N-terminal kinases (JNK), ERK1/2], downstream of 
RANKL/RANK interaction, leading to activation of 
pivotal transcription factors including NFkB and 
Fos/jun [14,17]. If the RANKL-induced decrease of 
E-cadherin demonstrated in hepatocellular carci-
noma [40] is confirmed in PTC, the association of 
loss of E-cadherin with TC aggressive phenotype 
[41] might reflect the RANKL prometastatic activ-
ity. However, our finding contradicts the antitumor 
aspect of RANKL revealed in breast cancer [42], 
hinting at the dichotomous RANKL signaling [42]. 

Characteristics OPG IHC expression p value

Negative
n (%)

Low
n (%)

High
n (%)

Age (years) 0.401

<45 22 (21.2) 14 (13.5) 36 (34.6)

≥45 16 (15.4) 4 (3.8) 12 (11.5)

Sex 0.133

Male 2 (1.8) 4 (3.6) 14 (12.5)

Female 40 (35.7) 14 (12.5) 38 (33.9)

CLNM Status <0.001
Negative 36 (31.6) 2 (1.8) 22 (19.3)

Positive 6 (5.3) 16 (14) 32 (28.1)

Histological PTC subtype 0.338

cPTC 32 (28.1) 14 (12.3) 30 (26.3)

FVPTC 10 (8.8) 2 (1.8) 20 (17.5)

TCV PTC 0 (0) 2 (1.8) 4 (3.5)

Multifocality 0.045
No 26 (23.2) 12 (10.7) 16 (14.3)

Yes 16 (14.3) 6 (5.4) 36 (32.1)

Capsular invasion 0.122

No 20 (17.5) 2 (1.8) 26 (22.8)

Yes 22 (19.3) 16 (14) 28 (24.6)

Hashimoto’s thyroiditis 0.505

No 14 (12.3) 10 (8.8) 20 (17.5)

Yes 28 (24.6) 8 (7) 34 (29.8)

T stage 0.723

1a 16 (14) 4 (3.5) 22 (19.3)

1b 8 (7) 4 (3.5) 14 (12.3)

2 2 (1.8) 2 (1.8) 0 (0)

3 16 (14) 8 (7) 18 (15.8)

TNM stage 0.640

I 34 (29.8) 16 (14) 48 (42.1)

II 0 (0) 0 (0) 2 (1.8)

III 8 (7) 2 (1.8) 4 (3.5)

p values depicted in bold denote statistical significance. IHC: immunohistochemical, PTC: papillary thyroid carcinoma, cPTC: clas-
sical papillary thyroid carcinoma, FVPTC: follicular variant of PTC, TCV PTC: tall cell variant of PTC, CLNM: central lymph node 
metastases

Table 4. Correlation of IHC expression of OPG with clinicopathological characteristics



RANKL, OPG, TRAIL, KRas and c-Fos in thyroid carcinoma1036

JBUON 2018; 23(4): 1036

 While contradicting Heymann et al. [9], we 
concurred with Sood et al. [8], unraveling the ex-
pression of OPG in PTC, enriching the repertoire of 
OPG-expressing malignancies, which encompasses 
breast, prostate, gastric, bladder [43], colorectal and 
pancreatic cancer [16], multiple myeloma and gi-
ant cell tumors [43]. Contrasting with Sood et al. 
[8], we demonstrated a significant association of 
OPG expression with CLNM, especially regard-
ing cPTC. This finding suggests the prometastatic 
potential of OPG, harmonized with the previously 
reported aggressiveness of OPG-expressing cancer, 
involving breast, prostate, gastric, colorectal and 

pancreatic cancer [16]. Our data are anticipated, 
considering the recently revolutionized oncogenic 
and prometastatic dynamics of OPG, synthesized 
by proangiogenic, pro-proliferative and prosurvival 
signaling [12,13,15,16]. This notion is strengthened 
by mass spectrometry analysis in inflammatory and 
aggressive breast cancer cells, unveiling several 
proteins-partners of OPG controlling initiation and 
progression of cancer via regulating cell metabo-
lism, transcription, translation, growth, prolifera-
tion, differentiation, organization of cytoskeleton, 
cell cycle and DNA repair [16]. Considering that 
integrins are well-recognized partners of OPG [15], 

Variables Reference OR 95% CI p value

Age (years) <45 0.109 0.008-1.411 0.09

Sex Male 0.105 0.005-2.157 0.144

T stage T1a 3.939 1.055-14.711 0.041
KRas Negative expression 0.219 0.017-2.808 0.243

c-Fos Negative expression 0.398 0.11-1.44 0.16

RANKL Negative expression 3.58 0.778-16.48 0.102

TRAIL Negative expression 10.335 1.23-86.87 0.032
OPG Negative expression 1.028 0.218-4.836 0.972
The final model is controlling for age, sex and T stage. p values depicted in bold denote statistical significance. CLNM: central lymph 
node metastases, CI: confidence interval, OR: odds ratio.

Table 6. Predictors of positive CLNM in multivariable-adjusted logistic regression models 

IHC expression Histological PTC subtype

cPTC FVPTC

Negative 
CLNM
n (%)

Positive
CLNM
n (%)

p value Negative 
CLNM
n (%)

Positive
CLNM
n (%)

p value

RANKL 0.027 0.324

Negative 16 (21.6) 2 (2.7) 6 (18.8) 0 (0)

Low 16 (21.6) 20 (27) 4 (12.5) 4 (12.5)

High 6 (8.1) 14 (18.9) 10 (31.3) 8 (25)

Total 38 (51.4) 36 (48.6) 20 (62.5) 12 (37.5)

OPG 0.006 0.069

Negative 26 (34.2) 6 (7.9) 10 (31.3) 0 (0.0)

Low 2 (2.6) 12 (15.8) 0 (0.0) 2 (6.3)

High 12 (15.8) 18 (23.7) 10 (31.3) 10 (31.3)

Total 40 (52.6) 36 (47.4) 20 (62.5) 12 (37.5)

TRAIL 0.043 0.049
Negative 24 (31.6) 8 (10.5) 12 (37.5) 0 (0.0)

Low 10 (13.2) 12 (15.8) 4 (12.5) 4 (12.5)

High 6 (7.9) 16 (21.1) 4 (12.5) 8 (25)

Total 40 (52.6) 36 (47.4) 20 (62.5) 12 (37.5)
p values depicted in bold denote statistical significance. IHC: immunohistochemical, PTC: papillary thyroid carcinoma, cPTC: classi-
cal papillary thyroid carcinoma, FVPTC: follicular variant of PTC, CLNM: central lymph node metastases

Table 5. Correlation of RANKL, OPG, TRAIL IHC expression with CLNM status according to histological PTC subtype
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it would be interesting to investigate whether the 
pro-proliferative effect of avβ6 integrin recently 
demonstrated in TC cells [44] is ascribed to OPG 
signaling. 
 On the contrary, Vik et al. reported an inverse 
relation between OPG and risk of cancer [45], rais-
ing the question whether OPG per se counterbal-
ances rather than favors tumor progression.
 The TRAIL expression in PTC supports the 
study of Sood et al. [8]. However, in contrast with 
Sood et al. [8] we found a significant correlation 
of TRAIL expression with CLNM, concerning both 
cPTC and FVPTC. Our findings suggest that TRAIL 
reinforces the metastatic process, a notion strength-
ened by the significant association of TRAIL with 
CLNM in multivariable-adjusted logistic regres-
sion models. Given that previous studies in cervi-
cal squamous cell [46] and renal cell carcinoma 
[47] supported the inherent antitumor potential of 
TRAIL, our data appear rather unprecedented. A ten-
able explanation of this discrepancy could be that 
the cancer cells evade the TRAIL-induced tumor 
immune surveillance through complex pathways, 
involving the OPG-mediated inhibition of TRAIL 
[22,23], and progress, co-opting the non-canonical 
TRAIL signaling. In that respect, the intriguing 
prometastatic potential of TRAIL may corroborate 
the non-canonical TRAIL signaling, wherein cancer 
cells resistant to TRAIL-induced apoptosis hijack, 
through mechanisms as yet unidentified, pivotal 
kinases downstream of TRAIL/TRAILR interaction, 
involving JNK, p38, ERK, protein kinase C (PKC), 
and PI3K/AKT, and divert them towards prosurviv-
al, pro-proliferative, and promigratory pathways 
[18]. The scarcity of relevant literature concerning 
PTC necessitates the continuation of research. 
 Due to limited knowledge on each individual 
Ras protein in PTC, KRas expression is interpreted 

in the context of the whole spectrum of Ras pro-
teins [48]. Considering the recently proven reliabil-
ity of IHC NRas expression to identify NRas mu-
tated thyroid neoplasia [49], IHC KRas expression 
is presumed to reflect KRas mutations. Our obser-
vation of KRas expression in 50% of FVPTC con-
solidates the previously reported molecular profile 
of FVPTC [25,50,51]. A novel finding is the KRas 
expression in almost half of PTC (47.4%), encoun-
tered in noteworthy proportions of cPTC and TCV 
PTC (47.4% and 33.3%, respectively). Importantly, 
among KRas-expressing PTC, the most prevalent 
subtype was the cPTC (66.7%), followed by FVPTC 
(29.6%) and TCV PTC (3.7%), challenging the tenet 
that the Ras-positive PTC is virtually FVPTC [52]. 
Collectively, our data suggest that KRas-expression 
in PTC expands beyond FVPTC. 
 Our observation of c-Fos overexpression in 
PTC paves the way for further research to address 
the paucity in the relevant literature. Two previous 
studies [53,54] showed high levels of c-Fos mRNA 
in DTC, whereas Liu et al. observed decreased c-
Fos mRNA expression in PTC [55]. However, these 
investigators did not evaluate the levels of c-Fos 
protein, hindering the comparison with our obser-
vation. c-Fos oncoprotein merits further explora-
tion in PTC in view of its implication in malignant 
transformation, proliferation, cell apoptosis and 
inflammatory milieu via forming AP-1 complex, 
activating the expression of target-genes harboring 
AP-1 sites (consensus sequence 5-TGAG/CTCA-3) 
[56]. More light should be shed on the equivocal 
role of c-Fos in cancer, synthesized by a tumor-pro-
moting aspect – proangiogenic, proinvasive, and 
antiapoptotic – versus an antitumor perspective, 
inhibitory of cell cycle and pro-apoptotic.
 Considering that multifocality is a common 
PTC feature encountered in 18-87% of PTC [57], 

Coexpressions Positive CLNM
n (%)

Negative CLNM
n (%)

p value

KRAS- c-Fos 22 (19.3) 22 (19.3) 0.482

RANKL–KRas 26 (22.8) 18 (15,8) 0.129

TRAIL–KRas 26 (22.8) 10 (8.8) 0.011
OPG–KRas 26 (22.8) 10  (8.8) 0.11

RANKL–c-Fos 36 (32.1) 30 (26.8) 0.194

TRAIL–c-Fos 34 (29.8) 16 (14) 0.006

OPG–c-Fos 34 (29.8) 20 (17.5) 0.024
RANKL–TRAIL 46 (40.4) 20 (17.5) <0.001
RANKL–OPG 46 (40.4) 22 (19.3) <0.001
TRAIL–OPG 44 (38.6) 20 (17.5) <0.001
p values depicted in bold denote statistical significance. CLNM: central lymph node metastases

Table 7. Correlation of pairs of coexpressions of molecules with CLNM status
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especially in 40% of papillary thyroid microcar-
cinoma [58], the significant correlation of OPG 
expression with multifocality is of paramount im-
portance. Assuming that multifocality reflects the 
tumor burden, conceived either as multicentricity 
or intrathyroidal spread of a single tumor, harbor-
ing increased risk of recurrence and mortality [57], 
its association with OPG expression may consoli-
date the tumor-promoting potential of OPG. How-
ever, multifocality is not unanimously recognized 
as indicator of tumor aggressiveness [57], hamper-
ing the interpretation of our result.
 The significant correlation of CLNM with the 
coexpressions TRAIL–KRas, TRAIL–c-Fos, OPG–c-
Fos, RANKL–TRAIL, RANKL–OPG and TRAIL–OPG 
may indicate the synergistic effect of the aforemen-
tioned molecules ascribed to their cross-talk that 
orchestrates the enhancement of the metastatic po-
tential of cancer cells. Downstream of RANKL, OPG, 
TRAIL, and mutated KRas proteins, the activation 
of PI3K/AKT and MAPK cascades in concert with 
the overexpression of c-Fos [14,16,18,19] could be 
conceived as a point of convergence of oncogenic 
and tumor-promoting pathways driven by these 
molecules, rationalizing their synergistic effect. 
In this setting, cancer cell survival pathways trig-
gered by the interactions OPG/aVβ5 integrin and 
OPG/Type II RANKL entail the activation of Ras 
proteins [16]. Most importantly, supportive of the 
prometastatic cross-talk between TRAIL and KRas 
is the in vitro Ras-stimulated conversion of TRAIL 
death receptors into invasion-inducing receptors, 
suppressing the Rho-dependent kinase (ROCK)/
LIM pathway [59]. Interestingly, a vicious cycle 
connecting OPG with c-Fos described in mouse 
[60] corroborates the OPG–c-Fos coexpression. 
Intriguingly, the significant association of CLNM 
with RANKL–OPG coexpression alludes to the pre-
dominance of the bona fide prometastatic role of 
OPG over the OPG-mediated abrogation of RANKL. 
 Certain limitations of the present study should 
be acknowledged, especially the relatively small 
sample size, the focus on only three histological 
PTC subtypes, technical issues inherent in immu-

nohistochemistry, and the lack of mRNA expres-
sion evaluation or genomic data. However, given 
the scarcity of the relevant literature, our findings 
create interesting hypotheses enriching our per-
ception of the molecular status of metastatic PTC, 
provided that they are further investigated. 
 From a translational viewpoint, our findings, 
if validated, could yield the rationale for the em-
bracement of studied molecules as predictors of 
CLNM, enabling the personalization of treatment. 
Considering the elusive preoperative and intraop-
erative detection of CLNM [61], the incorporation 
of the examined molecules in the molecular profile 
of PTC with a propensity to metastasize to lymph 
nodes may enhance the precise risk stratification of 
PTC with no clinical evidence of CLNM (cN0) and 
tailor the surgical strategy concerning the contro-
versial prophylactic central lymph node dissection. 
Moreover, exploiting this molecular constellation 
as therapeutic target in the context of metastatic 
PTC is a promising perspective that remains to be 
illuminated.

Conclusion

 In conclusion, this study yields significant pre-
liminary evidence that OPG, RANKL and TRAIL 
not only per se but also in concert with mutated 
KRas proteins – extending beyond the territory of 
FVPTC – and c-Fos expression could be envisaged 
as novel indicators of CLNM in PTC, while OPG is 
also implicated in multifocality. Further research 
to decipher and harness the examined molecules 
in PTC is awaited with anticipation.
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