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Summary

Purpose: Breast cancer possesses different molecular ex-
pressions and biological behaviors. The purpose of this 
study was to identify the key genes, pathways, and related 
prognostic values in estrogen receptor (ER)-negative/human 
epidermal growth factor 2 (HER2)-negative breast cancer by 
bioinformatics analysis.

Methods: The mRNA expression profiles of GSE20194 and 
GSE23988 were obtained from the Gene Expression Om-
nibus (GEO) database. Differently expressed genes (DEGs) 
were analyzed by GEO2R. A functional and pathway en-
richment analysis of DEGs was conducted using DAVID. A 
protein-protein interaction (PPI) network was constructed 
using STRING and a module analysis of the PPI network 
was conducted using Cytoscape software. Survival analysis 
of hub genes was analyzed using the Kaplan- Meier plotter 
online tool.

Results: 108 ER-negative/HER2-negative and 172 ER-pos-
itive/HER2-negative breast cancer samples were collected 
from the datasets GSE20194 and GSE23988. A total of 355 
DEGs were identified in the ER-negative/HER2-negative 

samples, including 140 up-regulated and 215 down-regu-
lated genes. The PPI network of DEGs consisted of 265 nodes 
and 648 edges. A significant module (12 nodes and 56 edges) 
was acquired from the PPI network of DEGs. Geneontology 
(GO) and pathway enrichment analysis demonstrated that 
this module was mainly related with transcription, cell pro-
liferation, binding, and pathways in the PI3K-Akt signal-
ing pathway. The high expression of CCNE1, KRT16, and 
MYBL2 was associated with worse relapse-free survival 
(RFS) and overall survival (OS) in ER-negative/HER2-neg-
ative breast cancer.

Conclusions: An integrated bioinformatics analysis was 
utilized to discover key candidate genes and pathways in 
ER-negative/HER2-negative breast cancer. This can improve 
the understanding of molecular mechanisms and provide 
potential candidate genes for diagnosis, prognosis, and in-
dividualized therapy.

Key words: bioinformatics analysis, breast cancer, differ-
ently expression genes, survival

Introduction

 Breast cancer is widely considered a heteroge-
neous disease that has differing molecular expres-
sions and biological behaviors. Gene microarray 
technology and immunohistochemical techniques 

have classified breast cancers into hormone re-
ceptor positive (luminal A and luminal B), human 
epidermal growth receptor 2 (HER2)-positive, and 
basal-like type [1]. The differences of expression 
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of genes and patterns of mutation may result in 
biological and clinical variations between ER-pos-
itive and ER-negative breast cancers. ER-negative 
breast cancers correlate with increased histologi-
cal grade, sensitivity to chemotherapy, and metas-
tasize to visceral organs [2,3]. Therefore, under-
standing the molecular mechanism of ER-negative 
breast cancer is critically demanded.
 To date, high-throughput platforms used to 
analyze gene expression can screen out the hun-
dreds of DEGs that mediate different biological and 
molecular processes, as well as pathways during 
tumorigenesis [4]. However, results were always 
limited or contradictory between breast cancer 
studies [5]. Most microarray data has been saved 
in public databases, such as GEO and ArrayEx-
press Archive of Functional Genomics Data. The 
integrated bioinformatics approach combined with 
expression profiling techniques may offer valuable 
evidence for additional exploration.
 In this study, two original gene expression 
datasets, namely GSE20194 and GSE23988, were 
downloaded from the GEO repository. Using the 
web-based tool GEO2R, DEGs were screened be-
tween ER-negative/HER2-negative and ER-posi-
tive/HER2-negative breast cancer samples. Subse-
quently, GO and pathway enrichment analysis of 
the DEGs were screened using DAVID Bioinformat-
ics Resources, PANTHER Classification System, 
and KEGG Pathway. The PPI network of the DEGs 
and modular analysis were used to identify hub 
genes in ER-negative/HER2-negative breast cancer 
samples. The genes were analyzed and visualized 
using the online STRING database and Cytoscape 
software. The Kaplan Meier plotter was utilized to 
combine the survival analysis of the hub genes. 
Finally, the series of bioinformatics analysis may 
provide possible genes for diagnosis, prognosis, 
and individualized breast cancer therapy.

Methods

Microarray data

 The gene expression profiles of GSE20194 and 
GSE23988 were accessed from the GEO repository 
(available at: https://www.ncbi.nlm.nih.gov/geo/). Both 
gene profiles were built on the Affymetrix GPL96 plat-
form (Affymetrix Human Genome U133A Array). Ex-
cluding 59 HER2-positive breast cancer samples, the 
GSE20194 dataset contained 219 samples, including 79 
ER-negative/HER2-negative breast cancer samples and 
140 ER-positive/HER2-negative breast cancer samples 
[6]. GSE23988 consisted of 29 ER-negative/HER2-neg-
ative breast cancer samples and 32 ER+/HER2- breast 
cancer samples [7].

Identification of EDGs

 The identification of DEGs was carried out using 
the web-based tool GEO2R (https://www.ncbi.nlm.nih.
gov/geo/geo2r/). GEO2R enables comparison between 
at least two groups of samples in a GEO series to cat-
egorize differentially expressed genes in several ex-
perimental settings. The adjusted p values (adj.P) are 
frequently utilized for microarray data and offer balance 
between the detection of statistically significant genes 
and the limits of false positives. The adj. p<0.05 and 
|logFC|>1 were defined as cut-off conditions to identify 
the statistically significant DEGs.

Gene ontology and pathway enrichment analysis

 The DAVID Bioinformatics Resources [8] (available 
at: https://david.ncifcrf.gov/) and PANTHER Classifica-
tion System [9] (available at: http://www.pantherdb.org/) 
are web-accessible programs that provide a detailed set 
of functional annotation tools to determine the function 
and utility of biological systems using molecular-level 
information, for example, extensive molecular datasets 
produced by genome sequencing and investigational 
technologies. GO enrichment and KEGG pathway anal-
ysis were conducted with the DAVID online tool. A p 
value <0.05 was chosen as the cut-off criterion to ana-
lyze the DEGs at the functional level.

Protein-protein interaction network and modules analysis

 The PPI network of DEGs was constructed by 
the online STRING database [10] (available at: http://
string-db.org/). Cytoscape software was utilized to ex-
plore the relationship of the key DEGs in ER-negative/
HER2-negative breast cancer [11]. Apps of Cytoscape 
software, NetworkAnalyzer, and the Molecular Com-
plex Detection (MCODE) were utilized to measure node 
degree. This is the number of inter-connections to filter 
hub genes of PPI and screen modules of the PPI net-
work, with cut-off= 2, node score cut-off= 0.2, k-core= 2, 
and max. depth= 100. The functional enrichment analy-
sis of hub genes in each module was performed using
DAVID.

Survival analysis of up-regulated hub genes

RFS and OS of breast cancer patients were investigated 
by the Kaplan Meier plotter (available at: http://kmplot.
com/analysis/), which assesses the influence of 54,675 
genes on survival using breast, ovarian, lung, and gas-
tric cancer patients, with a mean follow-up of 69, 40, 
49, and 33 months [12]. The hazard ratio (HR) with 95% 
confidence intervals and log rank p values were quanti-
fied based on the online database.

Results 

Identification of DEGs in ER-negative/HER2-negative 
breast cancer

 A total of 108 ER-negative/HER2-negative and 
172 ER-positive/HER2-negative breast cancer sam-
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ples were collected from GSE20194 and GSE23988. 
Based on the GEO2R analysis, 588 and 626 DEGs 
were extracted from the expression profile data-
sets GSE20194 and GSE23988, respectively. After

integrated bioinformatics analysis, 355 consist-
ently expressed genes were screened out in data-
sets using the web-based tool ‘calculate and draw 
custom Venn diagrams’ (available at: http://bioin-
formatics.psb.ugent.be/webtools/Venn/) (Figure 1), 
including 140 up-regulated and 215 down-regu-
lated genes in ER-negative / HER2-negative breast 
cancer samples compared to ER-positive / HER2-
negative breast cancer samples (Table 1).

GO and pathway enrichment analysis

 To investigate the function and pathway of 
candidate DEGs, DAVID and PANTHER online 
database were used to perform the functional en-
richment analysis. The GO analyses of DEGs were 
categorized into three functional groups: biologi-
cal process (BP), molecular function (MF), and cel-
lular component (CC) (Figures 2 and 3). Biological 
process is associated with cellular, metabolic, and 
development processes. For molecular function, 
DEGs possessed enriched catalytic, binding, and 

Figure 1. Identification of consistently DEGs from the 
datasets GSE20194 and GSE23988. 355 consistently ex-
pressed genes were screened out in datasets by the web-
based tool “Calculate and draw custom Venn diagrams” 
(available at: http://bioinformatics.psb.ugent.be/webtools/
Venn/).

Table 1. Identification of 355 consistently expressed genes from the datasets GSE20194 and GSE23988

Expression DEGs

Up-regulated
(140)

HACD1, CDH3, MICALL1, C1orf106, CAPN6, BBOX1, PDE9A, TTYH1, KCNG1, GLS, GSTA1, HSD17B2, 
MPZL2, CYP39A1, CRABP1, ACTG2, KLK6, MMP7, KRT17, FZD7, APBA2, SERPINB5, TMEM158, ZIC1, 
WWTR1, PKP1, ST8SIA1, NXN, FABP7, FERMT1, SMOX, ANP32E, ARHGEF4, UBE2E3, ELF5, RARRES1, 
SOX10, FAT1, PTK7, CSRP2, SERPINE2, MFGE8, FOLH1B, SNORA11E, ART3, NUDT11, CLDN8, ST3GAL6, 
PHGDH, UCHL1, PAX6, GABRE, NFIB, SLPI, GPM6B, RRAGD, CBS, CLDN1, EGFR, CAV2, SOX11, KRT5, 
TMSB15B, CCNE1, GABBR2, MAP7D3, HLA-DOB, FSCN1, DZIP1, GPR161, CHI3L2, SMCO4, CALD1, GATA6, 
BCL11A, ITM2C, KRT6B, PSAT1, FOXC1, TRIM2, CALB2, LAMP3, FABP5, ZNF750, ROPN1B, LY6D, MCM5, 
PLIN2, CRYAB, MAP4K4, GBP1, TSPYL5, PTX3, KCNK5, LPIN1, TRIM29, CDC20, MPP6, KRT16, CDKN2A, 
EN1, GABRP, KHDRBS3, CX3CL1, LDHB, VSNL1, PLS3, TTLL4, ROR1, PRKD3, UGT8, MIA, PI3, SLC6A14, 
GAL, ADGRL2, CHODL, JRKL, CHI3L1, SFRP1, RNF144A, PRNP, SLC16A1, DSC2, HRASLS, MYBL2, MYO10, 
GSTP1, PROM1, GJB3, SCRG1, BTG3, CYP1B1, CHST3, SIX3, VGLL1, MTMR2, FAM171A1, PLAGL1, CBR1

Down-regulated
(215)

NPDC1, CREB3L1, TJP3, TSPAN1, ERBB4, HDGFRP3, KRT19, UGCG, SH3BGRL, ARMT1, APBB2, 
CRIP1, HSPB1, TP53TG1, EPS8L1, SIGIRR, HSPB8, SYT1, GDF15, SIDT1, NPRL2, FAM134B, RTN1, 
SIAH2, RARA, CLGN, SLC2A10, DCXR, CEACAM6, MREG, COX6C, CYP2B7P, KCND3, GUSBP3, 
GATA3, MED13L, PLK2, GJA1, ELOVL5, SCUBE2, PIP, ENPP1, SCNN1A, ACADSB, HSPA2, INPP4B, 
HGD, PDZK1, PNPLA4, UGDH, FAM198B, TIMP3, CIRBP, SMA4, CUEDC1, DACH1, SSH3, SLC16A6, 
PLA2G16, ITPR1, PLAT, C16orf45, TSPAN13, BLVRA, GAMT, GPRC5A, GALNT6, GFRA1, REPS2, 
SLC27A2, DUSP4, ABLIM3, CPE, COQ4, CCND1, IGFBP2, MYO6, STC2, EVA1B, BTD, TTC39A, REEP5, 
FOXA1, NPY1R, GREB1, ESR1, KITLG, SCCPDH, SLC1A1, SLC1A4, CHST15, LGALS8, GALNT7, TMCO6, 
CERS6, MUC1, RHOB, BCL2, IGFBP4, C8orf4, LRIG1, SPDEF, ABHD2, CYB5A, PTP4A2, TMC5, LMF1, 
CPB1, XYLT2, GLUL, NME3, TOX3, DNAJC12, AREG, IGF1R, MAST4, ABCC8, ELOVL2, MAGED2, 
CAMK2N1, ACOX2, EFHC1, IRS1, SERPINA3, SCGB2A2, ABAT, C4B_2, ECI1, NAT1, MLPH, RAI2, 
TMBIM6, TBC1D9, TFF1, CELSR1, NRIP1, AR, TBX3, ZNF552, HOXB2, PLEKHF2, SCGB2A1, IL6ST, 
FGFR3, PRSS23, METRN, CLSTN2, LAMA3, SCGB1D2, TFF3, KDM4B, KCNK15, ADCY9, CST3, GPD1L, 
SERPINA5, AMIGO2, G6PC3, VAV3, RABEP1, FBP1, FXYD3, INPP5J, KRT18, FUT8, SLC7A8, ITGB5, 
EVL, WWP1, CA12, BHLHE40, KCNE4, CFD, MISP, CHAD, TPBG, RET, MAPT, IGFBP5, SEMA3B, 
SLC9A3R1, SLC24A1, POLD4, SEMA3C, CYP2B7P, MZF1, GSTM3, CYP4B1, MCCC2, REEP1, GALNT10, 
ADIRF, AKR7A3, ADCY1, XBP1, CANT1, MSX2, SLC19A2, AGR2, PGR, CERS4, TNNT1, FAM174B, 
ANXA9, DHRS2, ASPN, AFF3, KIAA0040, SLC7A2, EEF1A2, DNALI1, SYBU, MYB, SLC39A6, SLC44A4

140 up-regulated genes and 215 down-regulated genes in ER-negative/HER2-negative breast cancer samples compared to ER-
positive/HER2-negative breast cancer samples.
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Figure 2. Gene ontology analysis of DEGs into 3 groups (Enrichment analysis by PANTHER). To investigate the func-
tion and pathway of candidate DEGs, the PANTHER online database was used to perform the functional enrichment 
analysis. The GO analyses of DEGs were grouped into three functional groups: biological process (BP), molecular func-
tion (MF), and cellular component (CC).



Bioinformatics of key candidate genes in ER neg / HER2 neg breast cancer 895

JBUON 2018; 23(4): 895

Figure 3. Functional enrichment analysis of 355 consistently expressed genes in ER-/HER2- breast cancer (Enrichment 
analysis by DAVID). To investigate the function and pathway of candidate DEGs, the DAVID online database was used 
to perform the functional enrichment analysis. The GO analyses of DEGs were classified into three functional groups: 
biological process (BP), molecular function (MF), and cellular component (CC).

Figure 4. PPI network of DEGs and modular analysis. A total of 265 DEGs (110 up-regulated genes in yellow nodes and 
155 down-regulated genes in blue nodes) were analyzed by STRING and Cytoscape. A significant module (12 nodes and 
56 edges) was selected from protein-protein interaction network. Red frames: 29 hub genes.
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transporter activities. As shown in Table 2, GO 
analysis revealed that up-regulated genes formed 
part of the biological development related with the 
regulation of single organism cell-cell adhesion, 
positive regulation of transcription from RNA 
polymerase II promoter, and transcription from 
the RNA polymerase II promoter, whereas down-
regulated genes were mainly enriched in mam-
mary gland alveolus development and negative in 
the regulation of apoptotic process and response to 
estradiol. As for molecular function, up-regulated 
genes were mainly enriched in RNA polymerase 
II transcription factor activity, sequence-specific 
DNA binding, identical protein binding and tran-
scription factor activity, and RNA polymerase II 
distal enhancer sequence-specific binding, where-
as, down-regulated genes were mainly enriched in 
insulin-like growth factor I enzyme, and receptor 
binding. The DAVID and PANTHER analysis dem-
onstrated that most of the DEGs were significantly 
enriched in cellular and metabolic process, bind-
ing and extracellular exosome.
 DEGs functional and signaling pathway en-
richment were analyzed by the KEGG PATHWAY. 
As shown in Table 3, signaling pathway analysis 

demonstrated that DEGs were enriched in meta-
bolic pathways, HTLV-I infection, proteoglycans in 
cancer, and the estrogen signaling pathway.

PPI network and modules analysis

 To detect the key candidate genes and path-
ways, the STRING online database and Cytoscape 
software were used to construct the PPI network 
and modules. The PPI network of DEGs comprised 
of 265 nodes and 648 edges, and included 110 up-
regulated and 155 down-regulated genes (Figure 
4). 29 hub genes (red frames in Figure 4) were 
identified from the 265 nodes (NetworkAnalyzer, 
Degree≥10). A significant module (12 nodes and 56 
edges) was also attained from the PPI network of 
DEGs using Cytoscape MCODE. GO and pathway 
enrichment analysis showed that this module was 
connected with transcription, cell proliferation, 
binding, pathways in cancer, and the PI3K-Akt 
signaling pathway (Table 4).

The Kaplan-Meier plotter

 The prognostic values of 5 up-regulated hub 
genes (CCNE1, CDKN2A, EGFR, KRT16 and MBL2) 

Table 2. Gene ontology analysis of DEGs in ER-negative/HER2-negative breast cancer (Enrichment analysis by DAVID)

Category Term

Up-regulated

GOTERM_BP_DIRECT GO:0016337~single organismal cell-cell adhesion

GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA polymerase II promoter

GOTERM_BP_DIRECT GO:0006366~transcription from RNA polymerase II promoter

GOTERM_MF_DIRECT GO:0000981~RNA polymerase II transcription factor activity, sequence-specific DNA binding

GOTERM_MF_DIRECT GO:0042802~identical protein binding

GOTERM_MF_DIRECT GO:0003705~transcription factor activity, RNA polymerase II distal enhancer sequence-specific 
binding

GOTERM_CC_DIRECT GO:0070062~extracellular exosome

GOTERM_CC_DIRECT GO:0005829~cytosol

GOTERM_CC_DIRECT GO:0005737~cytoplasm

Down-regulated

GOTERM_BP_DIRECT GO:0060749~mammary gland alveolus development

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process

GOTERM_BP_DIRECT GO:0032355~response to estradiol

GOTERM_MF_DIRECT GO:0031994~insulin-like growth factor I binding

GOTERM_MF_DIRECT GO:0019899~enzyme binding

GOTERM_MF_DIRECT GO:0005102~receptor binding

GOTERM_CC_DIRECT GO:0070062~extracellular exosome

GOTERM_CC_DIRECT GO:0005615~extracellular space

GOTERM_CC_DIRECT GO:0005789~endoplasmic reticulum membrane

Top three terms were selected according to p value. Gene count: the number of enriched genes in each term. GO: Gene ontology, BP: 
Biological process, MF: Molecular function, CC: Cellular component



Bioinformatics of key candidate genes in ER neg / HER2 neg breast cancer 897

JBUON 2018; 23(4): 897

Table 3. KEGG pathway analysis of differentially expressed genes

Pathway ID Name Count p value Genes

hsa04727 GABAergic synapse 8 0.00 GABRE, ADCY1, GLUL, ADCY9, GLS, ABAT, 
GABBR2, GABRP

hsa04915 Estrogen signaling pathway 8 0.01 EGFR, ADCY1, HSPA2, ADCY9, ESR1, 
CREB3L1, GABBR2, ITPR1

hsa04114 Oocyte meiosis 8 0.01 PGR, CCNE1, IGF1R, ADCY1, AR, ADCY9, 
CDC20, ITPR1

hsa05215 Prostate cancer 7 0.02 EGFR, CCNE1, IGF1R, AR, CCND1, BCL2, 
CREB3L1

hsa01100 Metabolic pathways 40 0.02 ACOX2, LDHB, ACADSB, FUT8, HSD17B2, 
ENPP1, BTD, GALNT7, GALNT6, ST8SIA1, 
CERS6, UGDH, CERS4, G6PC3, MTMR2, 
MCCC2, CBR1, GALNT10, XYLT2, INPP5J, 
ST3GAL6, UGT8, PLA2G16, NAT1, UGCG, 
FBP1, HGD, LPIN1, COX6C, POLD4, GLUL, 
NME3, GLS, PHGDH, ABAT, INPP4B, GAMT, 
PSAT1, DCXR, CBS

hsa04913 Ovarian steroidogenesis 5 0.03 IGF1R, ADCY1, CYP1B1, HSD17B2, ADCY9
hsa00980 Metabolism of xenobiotics by cytochrome P450 6 0.03 GSTA1, GSTM3, CBR1, CYP1B1, AKR7A3, 

GSTP1
hsa05166 HTLV-I infection 12 0.03 MSX2, POLD4, ADCY1, CCND1, CDKN2A, 

ADCY9, XBP1, CDC20, MYB, MYBL2, HLA-
DOB, FZD7

hsa05204 Chemical carcinogenesis 6 0.04 GSTA1, GSTM3, CBR1, CYP1B1, NAT1, 
GSTP1

hsa04923 Regulation of lipolysis in adipocytes 5 0.04 ADCY1, PLA2G16, ADCY9, NPY1R, IRS1
hsa05205 Proteoglycans in cancer 10 0.04 EGFR, IGF1R, CAV2, CCND1, ERBB4, ESR1, 

ITGB5, TIMP3, FZD7, ITPR1

Table 4 Functional and pathway enrichment analysis of the hub genes in module

Category Term Count p value Genes

GOTERM_BP_
DIRECT

GO:0045944~positive regulation of transcription 
from RNA polymerase II promoter

7 1.4E-05 PGR, EGFR, AR, CDKN2A, ESR1, 
MYB, MYBL2

GOTERM_BP_
DIRECT

GO:0060749~mammary gland alveolus develop-
ment

3 5.3E-05 AR, CCND1, ESR1

GOTERM_BP_
DIRECT

GO:0045893~positive regulation of transcription, 
DNA-templated

5 2.4E-04 CCNE1, AR, CDKN2A, ESR1,MYB

GOTERM_BP_
DIRECT

GO:0008283~cell proliferation 4 1.5E-03 EGFR, AR, KRT16, BCL2

GOTERM_BP_
DIRECT

GO:0000082~G1/S transition of mitotic cell cycle
3 1.9E-03 CCNE1, CCND1, CDKN2A

GOTERM_MF_
DIRECT

GO:0001077~transcriptional activator activity, 
RNA polymerase II core promoter proximal region 
sequence-specific binding

5 1.1E-05 PGR, AR, ESR1, MYB, MYBL2

GOTERM_MF_
DIRECT

GO:0008134~transcription factor binding 5 2.4E-05 AR, CCND1, CDKN2A, BCL2, ESR1

GOTERM_MF_
DIRECT

GO:0019899~enzyme binding 5 4.4E-05 PGR, EGFR, AR, CCND1, ESR1

GOTERM_MF_
DIRECT

GO:0000978~RNA polymerase II core promoter 
proximal region sequence-specific DNA binding

5 5.6E-05 PGR, AR, ESR1, MYB, MYBL2

GOTERM_MF_
DIRECT

GO:0005496~steroid binding 3 1.3E-04 PGR, AR, ESR1

KEGG_
PATHWAY

hsa05215:Prostate cancer 6 7.2E-08 EGFR, CCNE1, IGF1R, AR, CCND1, 
BCL2

KEGG_
PATHWAY

hsa05200:Pathways in cancer 7 5.6E-06 EGFR, CCNE1, IGF1R, AR, CCND1, 
CDKN2A, BCL2

KEGG_
PATHWAY

hsa04151:PI3K-Akt signaling pathway 6 6.2E-05 EGFR, CCNE1, IGF1R, CCND1, 
BCL2, MYB
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Figure 5. Prognostic value of up-regulated hub genes in breast cancer patients (Kaplan-Meier Plotter). The high ex-
pression of CCNE1, KRT16, and MYBL2 was associated with worse RFS and OS analyzed by the Kaplan-Meier plotter 
(available at: http://kmplot.com/analysis). 
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in PPI network were assessed in the Kaplan- Meier 
Plotter. As shown in Figure 5, the high expression 
of CCNE1, KRT16 and MYBL2 was associated with 
worse RFS and OS. There was no association be-
tween the survival and the expression of EGFR and 
CDKN2A (data not shown).

Discussion 

 Microarray and high-throughput sequenc-
ing have been widely used in clinical practice 
to reveal general genetic alteration and to iden-
tify targets for diagnosis, therapy, and prognosis 
in ER-positive breast cancer, such as Oncotype 
DX Recurrence Score (Genomic Health, CA) and 
MammaPrint (Agendia, Inc, the Netherlands) [5]. 
However, no comparable and validated microarray 
exists for ER-negative breast cancer, suggesting 
different gene expression, biological processes and 
signaling pathways in different subtypes of breast 
cancer.
 In the present study, two cohort profiles data-
sets were deeply analyzed by bioinformatics meth-
ods to identify 355 commonly changed DEGs, in-
cluding 140 up-regulated and 215 down-regulated 
genes in ER-negative/HER2-negative compared to 
ER-positive/HER2-negative breast cancer samples. 
The up and down-regulated DEGs were grouped 
based on functions and signaling pathways with 
marked enrichment analysis. As shown in Table 
2, 140 up-regulated genes were mainly enriched 
in cell-cell adhesion, protein binding, and positive 
regulation of transcription from the RNA polymer-
ase II promoter, which were all linked to cancer 
progression. Specifically, the regulation of tran-
scription from the RNA polymerase II promoter is 
necessary to properly regulate the development, 
growth and existence of eukaryotic organisms [13]. 
The TATA box, initiator (Inr), TFIIB recognition el-
ement (BRE), and downstream core promoter ele-
ment (DPE) all play critical roles in cancer pro-
gression, and are necessary to accurately initiate 
transcription by RNA polymerase II machinery 
[13,14], whereas the 215 down-regulated genes 
were mainly enriched in the negative regulation 
of apoptotic processes, enzyme, and receptor bind-
ing. The signaling pathway analysis demonstrated 
that the down-regulated genes were associated 
with metabolic pathways and PI3K-Akt signaling 
pathways.
 Subsequently, the PPI network of DEGs was 
created and 265 nodes/DEGs and 648 edges were 
identified. Meanwhile, one significant module was 
filtered from the PPI network complex. The mod-
ule consisted of 12 genes, including EGFR, ESR1, 

CCND1, BCL2, AR, PGR, CDKN2A, IFG1R, MYB, 
KRT16, MYBL2 and CCNE1, and is recorded at the 
top of many degree hub genes. GO and pathway 
enrichment analysis showed that this module is 
also connected with transcription, cell prolifera-
tion, binding and the PI3K-Akt signaling pathway. 
The PI3K-Akt signaling pathway plays a critical 
role in tumorigenesis and mediates critical cellu-
lar functions, including survival, proliferation, and 
metabolism. The pathway is connected with better 
outcomes in ER-positive early-stage breast cancer 
and tends to a worse prognosis in ER-negative sub-
type [15,16]. In the present analysis, EGFR, CCNE1, 
IGF1R, CCND1, BCL2 and MYB were enriched in 
the PI3K-Akt signaling pathway.
 EGFR, KRT16, MYBL2, CCNE1 and CDKN2A 
were up-regulated hub genes. Survival analysis 
of these 5 up-regulated hub genes revealed that 
CCNE1, KRT16, and MYBL2 were associated with 
worse RFS and OS with breast cancer. CCNE1 (cy-
clin E1) operates as a subunit of CDK2 and is es-
sential for cell cycle G1/S transition [17]. Another 
gene, MYBL2, is also connected with cell cycle 
progression. The nuclear protein is phosphorylat-
ed by cyclin A/CDK2 during the S-phase of the cell 
cycle, has both activator and repressor activities 
and triggers cell division cycle 2, cyclin D1, and 
insulin-like growth factor-binding protein 5 genes. 
CCNE1 and MYBL2 overexpression can cause 
chromosome instability and possibly tumorigen-
esis [17-20]. Meta-analyses have shown that the 
overexpression of CCNE1 is an autonomous prog-
nostic feature for both overall and breast cancer-
specific survival [21,22]. Another meta-analysis 
reported that CCNE1 might be a prognostic mark-
er for gastrointestinal cancer in clinical practice 
[23]. MYBL2 mediates snail expression to induce 
epithelial-to-mesenchymal transition (EMT) and 
invasion of breast cancer cells [24]. To date, the 
link between MYBL2 and survival in breast cancer 
has not been known. KRT16 is a keratin gene fam-
ily member and is expressed in the cytoskeleton 
of epithelial cells [25]. During the EMT process, 
epithelial markers, including E-cadherin, claudins, 
and keratins are down-regulated [26]. Two earlier 
studies of breast cancer patients showed that the 
overexpression of KRT16 in the primary tumor 
had a shorter RFS in comparison to patients with 
KRT16 low expression [27,28]. A recent study of 
circulating tumor cells (CTCs) reported that KRT16 
was up-regulated in basal-like breast cancer cell 
lines and that KRT16 expressions of CTCs were 
associated with shorter RFS in metastatic breast 
cancer patients [25]. The expression of KRT16 in 
primary breast cancer and CTCs may be further 
examined for potential clinical application.
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 In conclusion, this study has provided a com-
prehensive bioinformatics analysis of DEGs to 
discover the key candidate genes, pathways, and 
related prognostic values in ER-negative/HER2-
negative breast cancer. A total of 12 hub genes 
(EGFR, ESR1, CCND1, BCL2, AR, PGR, CDKN2A, 
IFG1R, MYB, KRT16, MYBL2, and CCNE1) were 
screened out and were significantly enriched in 
the positive regulation of transcription from RNA 
polymerase II promoters, cell proliferation, bind-
ing, and the PI3K-Akt signaling pathway. Among 
these hub genes, the high expression of CCNE1, 
KRT16 and MYBL2 was associated with worse 
RFS and OS of breast cancer patients. Even though 
these findings provide the potential genes for di-

agnosis, prognosis and individualized therapy of 
breast cancer, additional molecular biological ex-
periments are mandatory to investigate the iden-
tified genes in ER-negative/HER2-negative breast 
cancer.
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