## ORIGINAL ARTICLE

# Worst outcomes according to RAS mutation variants: an analysis in patients with metastatic colorectal adenocarcinoma

Pedro L.S. Usón Jr<sup>1</sup>, Diogo D.G. Bugano<sup>1</sup>, Fernando Moura<sup>1</sup>, Ricardo S. Carvalho<sup>2</sup>, Fernando C. Maluf<sup>1,2</sup>

<sup>1</sup>Oncology Department, Israelita Albert Einstein Hospital, São Paulo, Brazil; <sup>2</sup>Gastrointestinal Oncology Department Centro Oncológico Antônio Ermírio de Moraes, Beneficência Portuguesa de São Paulo, São Paulo, Brazil

## Summary

*Purpose:* Over 50% of metastatic colorectal cancers harbor RAS mutations. It is unclear if different mutation variants have an impact on survival. The purpose of this study was to evaluate the impact of these mutations on colorectal cancer survival.

Methods: The charts of all cases of metastatic colorectal cancer diagnosed between January 2005 and January 2016 in a tertiary hospital in Brazil were reviewed. Inclusion criteria were complete data on clinical staging, treatments received and all-RAS testing. Multivariate Cox proportional survival models were used to evaluate the impact of specific RAS variants on survival.

Results: There were 151 eligible patients and 61.6% had Key words: colorectal cancer, KRAS, overall survival, RAS

RAS alterations, the most common G12D (11.9%) and G12A (8.6%). Most patients received chemotherapy, including oxaliplatin (79%), irinotecan (53%) and bevacizumab (59%). Among RAS-wild type patients, 46% received anti-EGFR therapy. Median survival was 39.2 months for RAS-wildtype, 18.8 months for RAS G12A and 34.6 for other RASmutant patients (multivariate analysis for G12A vs RASwild type HR 1.94; 95% CI 0.83-5.51; p=0.12).

**Conclusion:** Patients with metastatic colorectal cancer who have RAS mutations have shorter overall survival. Regarding the impact of specific KRAS alterations, G12A mutations have a worse prognosis.

## Introduction

Colorectal cancer is the third most common cause of cancer death in both men and women [1]. The median survival of patients with metastatic disease is currently around 30 months, but outcomes are heterogeneous, with survival ranging from a few months to more than 5 years. Patient stratification by molecular markers may help identify patients with distinct outcomes [2,3].

Approximately 50% of tumors have RAS mutations (KRAS Exon 2-4 or NRAS Exon 2-4). All lead to similar resistance to anti-EGFR therapy and,

therefore, the specific type of alteration does not currently influence clinical practice.

However, recent publications have suggested an association between type of RAS mutation and prognosis [4-10]. The limitations of these reports have been the low frequency of some alterations, heterogeneity of studied populations and lack of detailed information on surgery and chemotherapy.

We reviewed patients with metastatic colorectal cancer in Brazil, with complete information on staging and treatments received, and evaluated the prognostic impact of different RAS alterations.

Correspondence to: Pedro Luiz Serrano Usón Jr, MD. Department of Oncology, Israelita Albert Einstein Hospital, 627/701 Albert Einstein Ave, Sao Paulo, CEP 05651-901, Brazil.

Tel: +55 11 2151 1233, Fax: +55 11 37422834, E-mail: pedroluiz\_uson@hotmail.com Received: 07/11/2017; Accepted: 04/01/2018

## Methods

### Patient population

We retrospectively reviewed charts of all patients with metastatic adenocarcinoma of colon and rectum treated at the Israelita Albert Einstein Hospital, a tertiary general Hospital in São Paulo (Brazil) between January 2005 and January 2016. Included were only patients with complete information on RAS testing (tested by polymerase chain reaction –PCR), clinical characteristics and treatment received. Two authors (FM and RSC) contributed with data from additional patients they follow at other institutes which met the inclusion criteria. Because these institutes don 't have onsite Institutional Review Boards (IRB), this project was reviewed and approved by the IRB at the Israelita Albert Einstein Hospital (CAAE: 55880616.9.0000.0071).

#### Data collected and primary outcomes

All data was collected from patient charts. The primary outcome was cancer-specific survival after the diagnosis of metastatic disease. Covariates were: age, gender, ECOG (Eastern Cooperative Oncology Group) performance status (PS), past medical history, tumor laterality, systemic therapy received, operations performed, NRAS, BRAF and KRAS mutations (G12D, G12V, G12C, G12S, G12A, G12F, G12R, G12T, G13D, A146T).

#### **Statistics**

Patients were divided in groups according to mutation status. Categorical data was described as absolute and relative frequencies and continuous data as means and standard deviations or medians and interquartile ranges (IQR). For survival analysis, Kaplan-Meier curves were constructed and patients were censored at last follow-up. Curves were compared using log-rank test and for covariate adjustment we used Cox proportional survival models. Unless otherwise stated, significance was set at 5%. All analyses were done using R version 3.1.3 or SPSS version 24.

## Results

#### Patient population and treatments

The final database included 151 patients with metastatic colorectal cancer and complete information on RAS testing, clinical staging and treatments received (Figure 1). Most patients (61.6%) had RAS mutations and the most common one was G12D (11.9%) (Table1). Clinical characteristics were overall comparable in the KRAS wild-type and mutated groups, but patients with mutations were more likely to have liver metastasis, to be non-smokers and to be younger than 65 years (Supplementary Table 1).

Treatment received was also similar for both groups, with 30% of patients undergoing hepatectomy, almost 100% receiving fluorouracil, close to 80% of receiving oxaliplatin-based regimens, 50% receiving irinotecan-based regimens and 50-60% receiving bevacizumab. As expected, the only difference was treatment with anti-EGFR antibodies,

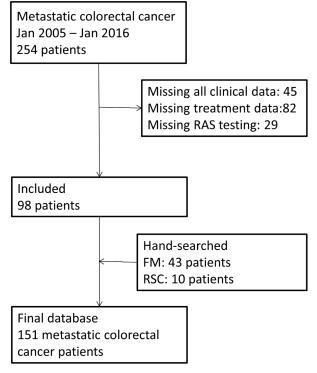



Figure 1. Patient selection chart.

Table 1. All included patient mutations

|                       | All included patients<br>(n=151)<br>n (%) |  |  |
|-----------------------|-------------------------------------------|--|--|
| Mutation              |                                           |  |  |
| Wild Type             | 58 (38.4)                                 |  |  |
| KRAS                  | 89 (58.9)                                 |  |  |
| NRAS                  | 2 (1.3)                                   |  |  |
| BRAF                  | 2 (1.3)                                   |  |  |
| Туре                  |                                           |  |  |
| A146T                 | 1 (0.7)                                   |  |  |
| BRAF                  | 2 (1.3)                                   |  |  |
| G12A                  | 13 (8.6)                                  |  |  |
| G12C                  | 17 (11.3)                                 |  |  |
| G12D                  | 18 (11.9)                                 |  |  |
| G12F                  | 1 (0.7)                                   |  |  |
| G12R                  | 1 (0.7)                                   |  |  |
| G12S                  | 5 (3.3)                                   |  |  |
| G12T                  | 1 (0.7)                                   |  |  |
| G12V                  | 13 (8.6)                                  |  |  |
| G13D                  | 9 (6.0)                                   |  |  |
| NRAS codon 12         | 2 (1.3)                                   |  |  |
| KRASmut not specified | 10 (6.6)                                  |  |  |

received by 46% of patients in the KRAS wild-type (18.8 months, vs 34.6 for other RAS mutations and group (Supplementary Table 2).

## Survival analysis and impact of RAS mutations

Median follow-up was 22 months (interquartile range 9-41) and median overall survival was 34.9 months. Because of small sample sizes, it was not possible to compare survival for each individual RAS mutation; however, patients with G12A mutations had a numerically lower overall survival 39.2 for wild-type patients) (Figure 2).

In univariate analysis, the presence of liver metastasis, bone metastasis, an ECOG PS of 3, diabetes and age older than 65 years were associated with shorter survival; treatment with any systemic chemotherapy was associated with longer survival (Supplementary Table 3). No individual mutation was statistically associated with worse survival, but, again, the G12A alteration had the

|                           | Hazard ratio 95% Confid |             | ence interval | p value |
|---------------------------|-------------------------|-------------|---------------|---------|
|                           | -                       | Lower limit | Upper limit   |         |
| Type of mutation          |                         |             |               |         |
| Wild                      |                         |             |               |         |
| G12A                      | 1.941                   | 0.834       | 4.513         | 0.124   |
| G12C                      | 1.397                   | 0.557       | 3.499         | 0.476   |
| G12D                      | 1.540                   | 0.606       | 3.917         | 0.364   |
| G12S                      | 1.776                   | 0.453       | 6.956         | 0.410   |
| G12V                      | 1.285                   | 0.463       | 3.567         | 0.631   |
| G13D                      | 0.686                   | 0.233       | 2.018         | 0.494   |
| Diabetes                  |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 1.604                   | 0.657       | 3.915         | 0.299   |
| ECOG PS                   |                         |             |               |         |
| 0                         |                         |             |               |         |
| 1                         | 0.859                   | 0.468       | 1.575         | 0.623   |
| 2                         | 2.673                   | 0.931       | 7.673         | 0.068   |
| 3                         | 11.323                  | 1.687       | 75.992        | 0.012   |
| Side                      |                         |             |               |         |
| Right                     |                         |             |               |         |
| Left                      | 0.704                   | 0.373       | 1.326         | 0.277   |
| Liver metastasis          |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 2.552                   | 1.224       | 5.319         | 0.012   |
| Carcinomatosis metastasis |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 1.345                   | 0.689       | 2.625         | 0.385   |
| Lymph nodes metastasis    |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 1.154                   | 0.590       | 2.258         | 0.676   |
| Bone metastasis           |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 6.497                   | 2.302       | 18.340        | <0.001  |
| Lung metastasis           |                         |             |               |         |
| No                        |                         |             |               |         |
| Yes                       | 1.603                   | 0.844       | 3.046         | 0.150   |
| Age                       | 1.475                   | 0.800       | 2.720         | 0.214   |

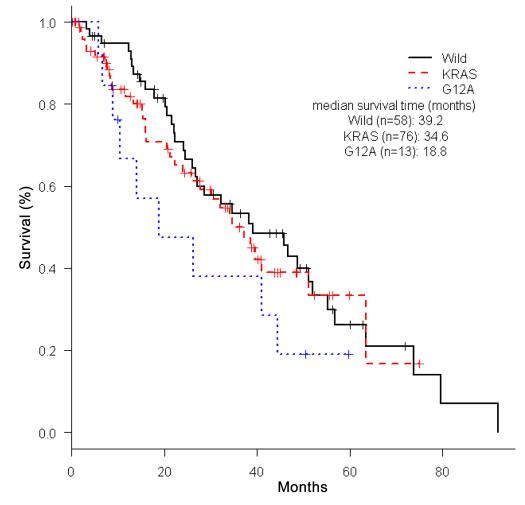
Table 2. Multivariate COX regression analysis

Bold numbers denote statistical significance

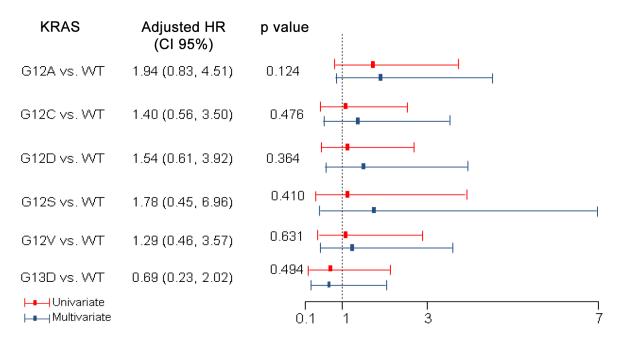
|                              | Wild (n= 58)<br>n (%)  | KRASmut (n= 89)<br>n (%) | Total (n= 147)<br>n (%) |
|------------------------------|------------------------|--------------------------|-------------------------|
| Side                         |                        |                          |                         |
| Right                        | 21 (36.2)              | 21 (23.6)                | 42 (28.6)               |
| Left                         | 37 (63.8)              | 68 (76.4)                | 105 (71.4)              |
| Liver                        |                        |                          |                         |
| No                           | 25 (43.1)              | 24 (27.0)                | 49 (33.3)               |
| Yes                          | 33 (56.9)              | 65 (73.0)                | 98 (66.7)               |
| Carcinomatosis               |                        |                          |                         |
| No                           | 40 (69.0)              | 66 (74.2)                | 106 (72.1)              |
| Yes                          | 18 (31.0)              | 23 (25.8)                | 41 (27.9)               |
| Lymph nodes                  |                        |                          |                         |
| No                           | 35 (60.3)              | 67 (75.3)                | 102 (69.4)              |
| Yes                          | 23 (39.7)              | 22 (24.7)                | 45 (30.6)               |
| Bones                        |                        |                          |                         |
| No                           | 54 (93.1)              | 85 (95.5)                | 139 (94.6)              |
| Yes                          | 4 (6.9)                | 4 (4.5)                  | 8 (5.4)                 |
| Lung                         |                        |                          |                         |
| No                           | 43 (74.1)              | 67 (75.3)                | 110 (74.8)              |
| Yes                          | 15 (25.9)              | 22 (24.7)                | 37 (25.2)               |
| Brain                        |                        |                          |                         |
| No                           | 58 (100.0)             | 87 (97.8)                | 145 (98.6)              |
| Yes                          | 0 (0.0)                | 2 (2.2)                  | 2 (1.4)                 |
| Others                       |                        |                          | × ,                     |
| No                           | 58 (100.0)             | 87 (97.8)                | 145 (98.6)              |
| Yes                          | 0 (0.0)                | 2 (2.2)                  | 2 (1.4)                 |
| Death                        |                        |                          | × ,                     |
| No                           | 22 (37.9)              | 46 (51.7)                | 68 (46.3)               |
| Yes                          | 36 (62.1)              | 43 (48.3)                | 79 (53.7)               |
| ECOG PS                      |                        | ()                       | ., ()                   |
| 0                            | 16 (27.6)              | 35 (39.3)                | 51 (34.7)               |
| 1                            | 37 (63.8)              | 45 (50.6)                | 82 (55.8)               |
| 2                            | 5 (8.6)                | 6 (6.7)                  | 11 (7.5)                |
| 3                            | 0 (0.0)                | 3 (3.4)                  | 3 (2.0)                 |
| Absent of comorbidities      | 0 (0.0)                | 0 (0.1)                  | 5 (2.6)                 |
| No                           | 29 (50.0)              | 37 (41.6)                | 66 (44.9)               |
| Yes                          | 29 (50.0)              | 52 (58.4)                | 81 (55.1)               |
| Smoking                      | 27 (30.0)              | 52 (50.1)                | 01 (33.1)               |
| No                           | 44 (75.9)              | 78 (87.6)                | 122 (83.0)              |
| Yes                          | 14 (24.1)              | 11 (12.4)                | 25 (17.0)               |
| Alcohol consumption          | 11(21.1)               | 11 (12.1)                | 23 (17.0)               |
| No                           | 51 (87.9)              | 78 (87.6)                | 129 (87.8)              |
| Yes                          | 7 (12.1)               | 11 (12.4)                | 18 (12.2)               |
| Cardiovascular comorbidities | / (12.1)               | 11 (12.1)                | 10 (12.2)               |
| No                           | 49 (84.5)              | 75 (84.3)                | 124 (84.4)              |
| Yes                          | 9 (15.5)               | 14 (15.7)                | 23 (15.6)               |
| Diabetes                     | <i>y</i> (13.3)        | 14(15.7)                 | 25 (15.0)               |
| No                           | 53 (91.4)              | 83 (93.3)                | 136 (92.5)              |
| Yes                          | 5 (8.6)                | 6 (6.7)                  | 130 (92.3)<br>11 (7.5)  |
| Age (years)                  | 5 (0.0)                | 0 (0.7)                  | 11 (7.3)                |
| < 65                         | ZZ (EK O)              | 60 (67.4)                | 93 (63.3)               |
| < 05<br>> 65                 | 33 (56.9)              |                          |                         |
|                              | 25 (43.1)              | 29 (32.6)                | 54 (36.7)               |
| Sex                          | 10 (72 0)              | 76 (10 1)                | EE (77 A)               |
| female<br>male               | 19 (32.8)<br>39 (67.2) | 36 (40.4)<br>53 (59.6)   | 55 (37.4)<br>92 (62.6)  |

## Supplementary Table 1. Global descriptive analysis by presence of mutation

strongest association (HR 1.76; 95%CI 0.84-3.69; Discussion p=0.13;Supplementary Table 4). This did not


change significantly after multivariate analysis (Table 2;Supplementary Figure 1).

There was no clinical condition that could characterize or differentiate patients with tumors with G12A mutation compared with other RAS status, including tumor side (Supplementary Table 5).


We reviewed charts of 151 patients with metastatic colorectal cancer treated in a tertiary hospital in Brazil between 2005 and 2016. After correction for clinical characteristics, resections and chemotherapies received, patients with G12A alterations had numerically shorter survival (18.8 months vs 34.6 for other RAS mutations and 39.2 for RAS-wild

Supplementary Table 2. Descriptive analysis of treatments

|                                           | Wild (n= 58)<br>n (%) | KRASmut (n= 89)<br>n (%) | Total (n= 147)<br>n (%) |  |
|-------------------------------------------|-----------------------|--------------------------|-------------------------|--|
| Chemotherapy                              |                       |                          |                         |  |
| No                                        | 0 (0.0)               | 2 (2.2)                  | 2 (1.4)                 |  |
| Yes                                       | 58 (100.0)            | 87 (97.8)                | 145 (98.6)              |  |
| 5-Fluorouracil / Capecitabine             |                       |                          |                         |  |
| No                                        | 0 (0.0)               | 2 (2.2)                  | 2 (1.4)                 |  |
| Yes                                       | 58 (100.0)            | 87 (97.8)                | 145 (98.6)              |  |
| Oxaliplatin                               |                       |                          |                         |  |
| No                                        | 11 (19.0)             | 20 (22.5)                | 31 (21.1)               |  |
| Yes                                       | 47 (81.0)             | 69 (77.5)                | 116 (78.9)              |  |
| Irinotecan                                |                       |                          |                         |  |
| No                                        | 28 (48.3)             | 41 (46.1)                | 69 (46.9)               |  |
| Yes                                       | 30 (51.7)             | 48 (53.9)                | 78 (53.1)               |  |
| Regorafenib                               |                       |                          |                         |  |
| No                                        | 53 (91.4)             | 85 (95.5)                | 138 (93.9)              |  |
| Yes                                       | 5 (8.6)               | 4 (4.5)                  | 9 (6.1)                 |  |
| Bevacizumab                               |                       |                          |                         |  |
| No                                        | 28 (48.3)             | 33 (37.1)                | 61 (41.5)               |  |
| Yes                                       | 30 (51.7)             | 56 (62.9)                | 86 (58.5)               |  |
| Cetuximab/Panitumumab                     |                       |                          |                         |  |
| No                                        | 31 (53.4)             | 87 (97.8)                | 118 (80.3)              |  |
| Yes                                       | 27 (46.6)             | 2 (2.2)                  | 29 (19.7)               |  |
| Mitomycin                                 |                       |                          |                         |  |
| No                                        | 55 (94.8)             | 84 (94.4)                | 139 (94.6)              |  |
| Yes                                       | 3 (5.2)               | 5 (5.6)                  | 8 (5.4)                 |  |
| Hepatectomy                               |                       |                          |                         |  |
| No                                        | 45 (77.6)             | 58 (65.2)                | 103 (70.1)              |  |
| Yes                                       | 13 (22.4)             | 31 (34.8)                | 44 (29.9)               |  |
| Radio-frequency ablation of liver lesions |                       |                          |                         |  |
| No                                        | 49 (84.5)             | 76 (85.4)                | 125 (85.0)              |  |
| Yes                                       | 9 (15.5)              | 13 (14.6)                | 22 (15.0)               |  |
| Ressection of lung lesions                |                       |                          |                         |  |
| No                                        | 56 (96.6)             | 82 (92.1)                | 138 (93.9)              |  |
| Yes                                       | 2 (3.4)               | 7 (7.9)                  | 9 (6.1)                 |  |
| Peritonectomy                             |                       |                          |                         |  |
| No                                        | 55 (94.8)             | 87 (97.8)                | 142 (96.6)              |  |
| Yes                                       | 3 (5.2)               | 2 (2.2)                  | 5 (3.4)                 |  |



**Figure 2.** Overall survival according to RAS mutation. Wild: RAS wild type, KRAS: presence of a KRAS mutation, G12A: presence of KRAS G12A mutation. Log rank, p:0.2.



**Supplementary Figure 1.** Forest plot of overall survival according to subgroups of mutation. This Figure demonstrates the results of investigation of mutations compared to wild type (WT) RAS by Cox proportional hazard models. In both simple (red line) and multiple (blue line) models we had no statistically significant association.

## Supplementary Table 3. Univariate Cox regression analysis

|                              | п   | Hazard ratio | 95% Confidence interval |             | p value |
|------------------------------|-----|--------------|-------------------------|-------------|---------|
|                              |     |              | Lower limit             | Upper limit |         |
| Side                         |     |              |                         |             |         |
| Right                        | 44  |              |                         |             |         |
| Left                         | 107 | 0.905        | 0.561                   | 1.458       | 0.681   |
| Liver metastasis             |     |              |                         |             |         |
| No                           | 52  |              |                         |             |         |
| Yes                          | 99  | 1.679        | 1.026                   | 2.748       | 0.039   |
| Carcinomatosis metastasis    |     |              |                         |             |         |
| No                           | 109 |              |                         |             |         |
| Yes                          | 42  | 0.941        | 0.566                   | 1.564       | 0.814   |
| Lymph nodes metastasis       |     |              |                         |             |         |
| No                           | 103 |              |                         |             |         |
| Yes                          | 48  | 1.059        | 0.665                   | 1.686       | 0.810   |
| Bone metastasis              |     |              |                         |             |         |
| No                           | 143 |              |                         |             |         |
| Yes                          | 8   | 2.677        | 1.149                   | 6.234       | 0.022   |
| Lung metastasis              |     |              |                         |             |         |
| No                           | 113 |              |                         |             |         |
| Yes                          | 38  | 1.178        | 0.719                   | 1.931       | 0.516   |
| ECOG PS                      |     |              |                         |             |         |
| 0                            | 52  |              |                         |             |         |
| 1                            | 85  | 1.040        | 0.626                   | 1.726       | 0.880   |
| 2                            | 11  | 2.230        | 0.954                   | 5.216       | 0.064   |
| 3                            | 3   | 24.851       | 6.644                   | 92.943      | <0.001  |
| Smoking                      |     |              |                         |             |         |
| No                           | 125 |              |                         |             |         |
| Yes                          | 26  | 1.548        | 0.921                   | 2.603       | 0.099   |
| Alcohol consumption          |     |              |                         |             |         |
| No                           | 133 |              |                         |             |         |
| Yes                          | 18  | 0.789        | 0.392                   | 1.588       | 0.507   |
| Cardiovascular comorbidities |     |              |                         |             |         |
| No                           | 126 |              |                         |             |         |
| Yes                          | 25  | 0.826        | 0.448                   | 1.525       | 0.541   |
| Diabetes                     |     |              |                         |             |         |
| No                           | 140 |              |                         |             |         |
| Yes                          | 11  | 2.380        | 1.219                   | 4.646       | 0.011   |
| Age (years)                  |     |              |                         |             |         |
| ≤ 65                         | 95  |              |                         |             |         |
| > 65                         | 56  | 2.058        | 1.323                   | 3.201       | 0.001   |
| Chemotherapy                 |     |              |                         |             |         |
| No                           | 2   |              |                         |             |         |
| Yes                          | 149 | 0.056        | 0.013                   | 0.247       | <0.001  |
| Bevacizumab                  |     |              |                         |             |         |
| No                           | 63  |              |                         |             |         |
| Yes                          | 88  | 0.927        | 0.591                   | 1.453       | 0.740   |
| Hepatectomy                  |     |              | •                       |             |         |
| No                           | 106 |              |                         |             |         |
| Yes                          | 45  | 0.730        | 0.439                   | 1.214       | 0.225   |

type), which was marginally significant (multivariate HR 1.94; 95% CI 0.83-4.51; p=0.12).

Our database represents a contemporary cohort, with a median survival of 34.9 months and a prevalence of KRAS mutations of 58.9%, which is consistent with the literature [8,10-12]. Regarding the individual RAS alterations, comparison with other series is challenging, because many did not include KRAS Exons 3 and 4 or NRAS mutations [3,8,13], but found a relatively higher prevalence of G12A and G12C mutations [8,9].

The exact mechanism leading to RAS mutations has not been completely elucidated, but includes both genetic and epigenetic alterations [14]. Also, the exact impact of each mutation in the function of the RAS protein is unclear. For instance, KRAS G12V alterations have been shown to induce proliferation in endodermal stem cells, while NRAS alterations have no such an impact [14, 15].

Besides RAS wild-type patients are candidates for additional therapies (anti-EGFR), RAS alterations are associated with worse survival [16,17], even in contemporary studies using multi-drug regimens such as FOLFOXIRI [18]. This is consistent with our finding that patients with RAS alterations had shorter survival (34.6 vs 39.2 months).

Other groups have looked at the impact of specific RAS mutations on survival, with conflicting results. In a pooled analysis of patients enrolled in AIO clinical trials, G12C and G13D were associated with worse outcomes [8]; in a retrospective series of patients undergoing hepatectomy for liver metastasis at Johns Hopkins University, G12C was also a marker of shorter survival [9] and in a third series in Italy the same was found for G12D mutations [19].

In our series, G12A alterations were associated with a shorter overall survival (18.8 months vs 34.6

|                  | п  | Hazard ratio | 95% Confidence interval |             | p value |
|------------------|----|--------------|-------------------------|-------------|---------|
|                  |    |              | Lower limit             | Upper limit |         |
| Type of mutation |    |              |                         |             |         |
| Wild             | 58 |              |                         |             | 0.829   |
| G12A             | 13 | 1.762        | 0.840                   | 3.695       | 0.134   |
| G12C             | 17 | 1.117        | 0.492                   | 2.533       | 0.792   |
| G12D             | 18 | 1.171        | 0.513                   | 2.670       | 0.708   |
| G12S             | 5  | 1.183        | 0.360                   | 3.882       | 0.782   |
| G12V             | 13 | 1.122        | 0.436                   | 2.888       | 0.811   |
| G13D             | 9  | 0.757        | 0.268                   | 2.138       | 0.599   |
| Type of mutation |    |              |                         |             |         |
| MT               | 80 |              |                         |             |         |
| G13D             | 9  | 0.649        | 0.228                   | 1.845       | 0.418   |
| Type of mutation |    |              |                         |             |         |
| MT               | 76 |              |                         |             |         |
| G12A             | 13 | 1.519        | 0.724                   | 3.185       | 0.269   |
| Type of mutation |    |              |                         |             |         |
| MT               | 72 |              |                         |             |         |
| G12C             | 17 | 0.880        | 0.390                   | 1.982       | 0.757   |
| Type of mutation |    |              |                         |             |         |
| MT               | 71 |              |                         |             |         |
| G12D             | 18 | 0.920        | 0.407                   | 2.078       | 0.840   |
| Type of mutation |    |              |                         |             |         |
| MT               | 84 |              |                         |             |         |
| G12S             | 5  | 0.954        | 0.283                   | 3.214       | 0.939   |
| Type of mutation |    |              |                         |             |         |
| MT               | 76 |              |                         |             |         |
| G12V             | 13 | 0.914        | 0.358                   | 2.329       | 0.850   |

Supplementary Table 4. Comparison between wild and mutated types

|                           | Hazard ratio | 95% Confidence interval |             | p value |
|---------------------------|--------------|-------------------------|-------------|---------|
|                           | -            | Lower limit             | Upper limit |         |
| Type of mutation          |              |                         |             |         |
| Wild                      |              |                         |             |         |
| KRAS                      | 0.868        | 0.385                   | 1.958       | 0.733   |
| Side                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 0.699        | 0.350                   | 1.398       | 0.312   |
| Interaction (KRAS * Left) | 1.666        | 0.617                   | 4.502       | 0.314   |
| Гуре of mutation          |              |                         |             |         |
| Wild                      |              |                         |             |         |
| G12                       | 1.020        | 0.426                   | 2.446       | 0.964   |
| Side                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 0.678        | 0.337                   | 1.366       | 0.277   |
| nteraction (G12 * Left)   | 1.406        | 0.478                   | 4.138       | 0.536   |
| Type of mutation          |              |                         |             |         |
| G13D                      |              |                         |             |         |
| G12                       | 2.932        | 0.364                   | 23.615      | 0.312   |
| lide                      | 2./32        | 0.001                   | 23.013      | 0.012   |
| Right                     |              |                         |             |         |
| Left                      | 2.701        | 0.274                   | 26.648      | 0.395   |
| nteraction (G12 * Left)   | 0.332        |                         |             |         |
|                           | 0.552        | 0.029                   | 3.844       | 0.378   |
| Type of mutation          |              |                         |             |         |
| Wild                      |              | 0.045                   | 0.000       | 0.075   |
| G13D                      | 0.312        | 0.041                   | 2.375       | 0.261   |
| Side                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 0.703        | 0.352                   | 1.406       | 0.320   |
| nteraction (G13D* Left)   | 4.029        | 0.377                   | 43.105      | 0.249   |
| Type of mutation          |              |                         |             |         |
| MT                        |              |                         |             |         |
| G13D                      | 0.333        | 0.042                   | 2.642       | 0.298   |
| Side                      | 0.000        | 010 12                  |             | 0.270   |
| Right                     |              |                         |             |         |
| Left                      | 0.942        | 0.441                   | 2.011       | 0.878   |
| nteraction (G13D* Left)   |              | 0.252                   | 32.252      | 0.398   |
|                           | 2.849        | 0.252                   | 52.252      | 0.596   |
| Type of mutation          |              |                         |             |         |
| MT                        | 1 000        | 0.015                   | 1005        | 0.071   |
| G12C                      | 1.029        | 0.217                   | 4.885       | 0.971   |
| Side                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 1.169        | 0.528                   | 2.585       | 0.701   |
| nteraction (G12C* Left)   | 0.812        | 0.131                   | 5.053       | 0.823   |
| Type of mutation          |              |                         |             |         |
| MT                        |              |                         |             |         |
| G12D                      | 1.110        | 0.234                   | 5.275       | 0.895   |
| lide                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 1.177        | 0.533                   | 2.597       | 0.687   |
| Interaction (G12D* Left)  | 0.780        | 0.126                   | 4.827       | 0.789   |
| Type of mutation          | 0.760        | 0.120                   | 1.027       | 0.707   |
| MT                        |              |                         |             |         |
| G12S                      | 0.406        |                         | 1 202       | 0 51 6  |
|                           | 0.486        | 0.055                   | 4.293       | 0.516   |
| lide                      |              |                         |             |         |
| Right                     |              | o 175                   |             | a a - · |
| Left                      | 1.007        | 0.478                   | 2.123       | 0.984   |
| nteraction (G12S * Left)  | 3.341        | 0.242                   | 46.166      | 0.368   |
| 'ype of mutation          |              |                         |             |         |
| MT                        |              |                         |             |         |
| G12V                      | 0.870        | 0.109                   | 6.953       | 0.895   |
| Side                      |              |                         |             |         |
| Right                     |              |                         |             |         |
| Left                      | 1.122        | 0.529                   | 2.380       | 0.764   |
| nteraction (G12V * Left)  | 1.061        | 0.103                   | 10.964      | 0.960   |
| shows interaction         | 1.001        | 0.105                   | 10.704      | 0.700   |

Supplementary Table 5. Cox regression analysis accounting for interaction with tumor side

\*shows interaction

months for other RAS alterations). In a pooled analysis from 3 randomized studies, Peeters et al. [20] also showed that, among patients receiving exclusive supportive care, those with G12A mutations had worse survivals. The same group also showed that while adding Panitumumab to patients with RAS alterations had no impact on survival, adding it to patients with G12A mutations was detrimental. Furthermore, another study also indicated that G12A and G12V KRAS mutations were prognostic biomarkers for inferior progression-free survival and overall survival in patients treated with bevacizumab [21].

In our study, there was no clinical or anatomical condition that could characterize or differentiate patients with tumors with G12A mutation from the other cases. More studies are needed to understand the biological action of these mutations in the function of the RAS protein [14].

## Conclusion

Patients with metastatic colorectal cancer who have RAS mutations have shorter overall survival. Regarding the impact of specific KRAS alterations, G12A mutations have a worse prognosis.

## **Conflict of interests**

The authors declare no conflict of interests.

## References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. 9. CA-Cancer J Clin 2015;65:5-29.
- 2. Douillard JY, Oliner KS, Siena S et al. Panitumumab– FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-34.
- Heinemann V, von Weikersthal LF, Decker T et al. FOL-FIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:1065-75.
- 4. Bazan V, Migliavacca M, Zanna I et al. Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann Oncol 2012;13:1438-46.
- De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753-62.
- 6. Modest DP, Brodowicz T, Stintzing S et al. Impact of the specific mutation in KRAS codon 12 mutated tumors on treatment efficacy in patients with metastatic colorectal cancer receiving cetuximab-based first-line therapy: a pooled analysis of three trials. Oncology 2012;83:241-7.
- 7. Ma BB, Mo F, Tong JH et al. Elucidating the prognostic significance of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese patients with metastatic colorectal cancer. Asia Pac J Clin Oncol 2015;11:160-9.
- Modest DP, Ricard I, Heinemann V et al. Outcome according to KRAS-, NRAS-and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 2016;27:1746-53.

- Margonis GA, Kim Y, Spolverato G et al. Association between specific mutations in KRAS codon 12 and colorectal liver metastasis. JAMA Surg 2015;150:722-9.
- 10. Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract 2009;205:858-62.
- 11. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682-89.
- 12. Phipps AI, Buchanan DD, Makar KW et al. KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer 2013;108:1757-64.
- 13. Moosmann N, von Weikersthal LF, Vehling-Kaiser U et al. Cetuximab plus capecitabine and irinotecan compared with cetuximab plus capecitabine and oxaliplatin as first-line treatment for patients with metastatic colorectal cancer: AIO KRK-0104-a randomized trial of the German AIO CRC study group. J Clin Oncol 2011;29:1050-8.
- 14. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012;72:2457-67.
- 15. Quinlan MP, Quatela SE, Philips MR, Settleman J. Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol Cell Biol 2008; 28:2659-74.
- 16. Foltran L, De Maglio G, Pella N et al. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol 2015;11:629-40.
- 17. Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res 2010;16:2921-26.
- 18. Cremolini C, Loupakis F, Antoniotti C et al. FOLFOXIRI

935

plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015;16:1306-15.

- 19. Bruera G, Cannita K, Di Giacomo D et al. Worse prognosis of KRAS c. 35 G> A mutant metastatic colorectal cancer (MCRC) patients treated with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx). BMC Med 2013;11:59.
- 20. Peeters M, Douillard JY, Van Cutsem E et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol 2013;31:759-65.
- 21. Fiala O, Buchler T, Mohelnikova-Duchonova B et al. G12V and G12A KRAS mutations are associated with poor outcome in patients with metastatic colorectal cancer treated with bevacizumab. Tumor Biol 2016;37:6823-30.