ORIGINAL ARTICLE

A retrospective analysis on first-line bevacizumab, cetuximab, and panitumumab-containing regimens in patients with RASwild metastatic colorectal cancer: A Collaborative Study by Turkish Oncology Group (TOG)

Serkan Degirmencioglu¹, Ozgur Tanriverdi², Serkan Menekse³, Mutlu Dogan⁴, Bekir Hacıoglu⁵, Esin Oktay⁶, Dilek Erdem⁷, Erkan Arpaci⁸, Basak Oyan Uluc⁹, Serdar Turhal¹⁰, Merve Yilmaz¹¹, Kezban Nur Pilanci¹², Abdullah Sakin¹³, Murat Araz¹⁴, Suna Cokmert¹⁵, Ozlem Ozdemir¹⁶, Erdem Sen¹⁷, Erdinc Nayir¹⁸

¹Pamukkale University School of Medicine, Medical Oncology Department, Denizli, Turkey; ²Mugla Sitki Kocman University School of Medicine, Medical Oncology Department, Mugla, Turkey; ³Bagcilar Research and Training Hospital, Medical Oncology Department, Istanbul, Turkey; ⁴Ankara Numune Research and Training Hospital, Medical Oncology Department, Ankara, Turkey; ⁵Trakya University School of Medicine, Medical Oncology Department, Edirne, Turkey; ⁶Atatürk State Hospital, Medical Oncology Department, Aydin, Turkey; ⁷Medical Park Hospital, Medical Oncology Department, Samsun, Turkey; ⁸Bulent Ecevit University School of Medicine, Medical Oncology Department, Zonguldak, Turkey; ⁹Yeditepe University School of Medicine, Medical Oncology Department, Istanbul, Turkey; ¹⁰Anadolu Saglik Merkezi Medical Oncology Department, Gebze, Turkey; ¹¹Adnan Menderes University School of Medicine, Medical Oncology Department, Aydin, Turkey; ¹²Haseki Research and Training Hospital, Medical Oncology Department, Istanbul, Turkey; ¹³Okmeydani Research and Training Hospital, Medical Oncology Department, Istanbul, Turkey; ¹⁴Malatya State Hospital, Medical Oncology Department, Malatya, Turkey; ¹⁵Ankara Medicana Hospital, Medical Oncology Department, Ankara, Turkey; ¹⁶Celal Bayar University School of Medicine, Medical Oncology Department, Manisa, Turkey; ¹⁷Selcuk University School of Medicine, Medical Oncology Department, Konya, Turkey; ¹⁸Necip Fazil City Hospital, Medical Oncology Department, Kahramanmaras, Turkey.

Summary

Purpose: To compare the efficacy and adverse effect profiles of the first-line treatment of patients with KRAS wild type metastatic colorectal cancer (CRC) in Turkey who were treated based on regimens including bevacizumab, cetuximab and panitumumab.

Methods: This retrospective multicenter observational study involved a total of 238 patients who received chemotherapy in combination with either bevacizumab or cetuximab or panitumumab as first-line therapy for KRAS wild-type metastatic colorectal cancer. Patients with full medical records having pathological diagnosis of CRC adenocarcinoma were included in the study. The demographic, laboratory, histopathological and clinical characteristics of the patients were determined, and three groups were compared based on the study variables.

Results: The mean age of the entire sample (n=238) was 58 ± 11 years, 64% of which were male. The most frequent tumor localization was the rectum (37%) and G2 was the most common tumor grade (59.7%). About 63% of the patients had metastatic disease at diagnosis, with the most common site of metastasis being lung (14.7%) and liver (52.5%). Overall survival (OS) was 63.9%, while 1-, 3- and 5-year survival rates were 91.7, 56.6

and 36.9%, respectively. The expected mean survival was 49.1 months (95% CI, 42.9-55.3). The 1-, 3- and 5-year progression-free survival (PFS) rates following first-line treatment were 65.3, 26.1 and 5.6%, respectively, while disease free survival (DFS) in patients without metastasis at diagnosis was 68.5%. An analysis carried out disregarding which treatment the patients received (FOLFOX or FOLFIRI) revealed that a panitumumab-containing combination resulted in poorer prognosis compared to bevacizumab or cetuximab-containing combination (p<0.001). With regard to the adverse effect profile, the most common adverse effects were neuropathy and neutropenia in patients receiving FOLFOX-bevacizumab; neutropenia and perforation in patients receiving FOLFIRI-bevacizumab; and diarrhea in patients who received FOLFIRI-panitumumab combination.

Conclusion: is the first multicenter study performed in Turkey evaluating the response to treatment and adverse effects in patients with KRAS wild-type metastatic colorectal cancer.

Key words: bevacizumab, cetuximab, colorectal cancer, KRAS, metastatic, panitumumab

c) This work by JBUON is licensed under a Creative Commons Attribution 4.0 International License.

Correspondence to: Serkan Degirmencioglu, MD. Pamukkale University Hospital Fahri Goksin Oncology Center 20100, Denizli, Turkey.

Tel: +90 5358333655, E-mail: drserkandeg@hotmail.com Received: 05/06/2018; Accepted: 11/07/2018

Introduction

The prognosis of patients with advanced stage colorectal cancer (CRC) is still poor, despite developments in surgical interventions and the subsequently applied chemotherapy modalities. CRC still ranks 2nd worldwide in terms of cancer-related mortality [1]. In Turkey, CRC, with an incidence of 8%, ranks 4th following lung (30%), breast (25%), and thyroid (12%) cancers, according to the Republic of Turkish Ministry of Health 2014 basic cancer data [2]. The largest study of CRC epidemiology in Turkey was published in 2015 by the Turkish Oncology Group following an evaluation of 968 cases [3].

The application of the monoclonal antibody bevacizumab, which is effective against vascular endothelial growth factor A (VEGF-A), independently of the KRAS mutation, in combination with fluoropyrimidine derivatives and irinotecan or oxaliplatin has been shown to offer a survival advantage [4,5]. Combining FOLFIRI and FOLFOX with the epidermal growth-factor antibodies (anti-EGFR) cetuximab and panitumumab, respectively, whose efficacy has been defined only in KRAS and NRAS wild-type cases, has also shown survival benefit [6,7]. Responses to anti-VEGF and anti-EGFR agents in KRAS-wild mCRC patients raised the question of which agent should be used as a priority, given that the different toxicity profiles of the three targeted agents change the risk/benefit ratio of the treatment. The efficacy of these three agents has never been evaluated prospectively before in a single study, although some head-to-head studies on the efficacy of bevacizumab (BEV), cetuximab (CET), and panitumumab (PAN) have been carried out for the reason stated above [8-10].

There is a lack of a large multicenter database in our country, despite the development of mCRC treatment modalities based on mutation analysis of KRAS, NRAS and BRAF. The purpose of this study was to evaluate the preferences made depending on whether the treatment options are met by our health care system and the treatments used by clinics and medical oncologists, and to compare the adverse effect profiles and duration of survival in patients with KRAS wild-type mCRC receiving regimens including BEV, CET, and PAN.

Methods

This was a retrospective multicenter observational study including a total of 238 mCRC patients, who had been diagnosed pathologically as CRC adenocarcinoma with KRAS wild-type and who received chemotherapy in combination with either BEV or CET or PAN as a first-line therapy and whose medical records could be obtained from 18 different centers.

Statistics

The analyses were carried out using SPSS v21 and p<0.05 was accepted as significant. Descriptive studies were analyzed using chi-square test, Student's t-test, and Mann-Whitney U-test, depending on group numbers. Univariate and multivariate analyses were carried out using Spearman's correlation analysis, while PFS and OS were evaluated with Kaplan-Meier method. In addition, since the number of patients and their duration of follow-up in PAN group was less than the other groups, comparisons among the groups were made using Bonferroni corrections, with p <0.017 accepted as significant.

Results

The patients were divided into 3 groups as BEV, CET and PAN groups. The regimens accepted by the centers were determined as standard when selecting the study patients. Anti-VEGF (bevacizumab) or

Table 1	. Demographics	and clinical	characteristics of the	
cases				

Characteristics	n=238
	n (%)
Age, years, mean±SD	58.0±10.9
Range	27-85
Gender	
Male	153 (64.3)
Female	85 (35.7)
Tumor location	
Cecum	13 (5.5)
Ascending colon	28 (11.8)
Descending colon	26 (10.9)
Rectosigmoid colon	66 (27.7)
Rectum	89 (37.4)
Transverse colon	16 (6.7)
Metastasis at diagnosis	150 (63.0)
Lung	35 (14.7)
Liver	125 (52.5)
Peritoneal carcinomatosis	32 (13.4)
Other (Bone,brain,ovary)	10 (4.2)
Chemotherapy regimen	
FOLFIRI	136 (57.1)
FOLFOX	102 (42.9)
Monoclonal antibody	
Bevacizumab	114 (47.9)
Panitumumab	32 (13.4)
Cetuximab	92 (38.7)
Kras status	
Wild	200 (84.0)
Codon 13 wild	8 (3.4)
Codon 12 and 13 wild	30 (12.6)

Adverse effects	FOLFIRI (n=136) n (%)	FOLFOX (n=102) n (%)	p value
Nausea-vomiting	65 (47.8)	40 (39.2)	0.187
Neutropenia	62 (45.6)	41 (40.2)	0.406
Diarrhea	53 (39.0)	34 (33.3)	0.371
Rash			0.062
Iucositis 46 (33.8)		29 (28.4)	0.376
Anemia 41 (30.1)		18 (17.6)	0.027
Neuropathy	21 (15.4)	28 (27.5)	0.023
Trombocytopenia	18 (13.2)	17 (16.7)	0.459
Hand-foot syndrome	11 (8.1)	9 (8.8)	0.840
Ileus	2 (1.5)	12 (11.8)	<0.001
Nail disorders	11 (8.1)	1 (1.0)	0.013
Febrile neutropenia	3 (2.2)	8 (7.8)	0.059
Constipation	4 (2.9)	3 (2.9)	0.371
Arrhythmia	6 (4.4)	0 (0.0)	0.039
Deep vein thrombosis	6 (4.4)	0 (0.0)	0.039
Subileus	5 (3.7)	1 (1.0)	0.242
Blood transfusion	2 (1.5)	4 (3.9)	0.406
Malignant hypertension	5 (3.7)	0 (0.0)	0.073
Acute renal failure	0 (0.0)	4 (3.9)	0.033
Bowel perforation	0 (0.0)	4 (3.9)	0.033

Table 2. Adverse effects profile by standard therapy

Bold numbers denote statistical significance

Table	3. Adverse	effects	profile	by	monoclonal	antibody

Adverse effects	Bevacuzimab (n=114) n (%)	Panitumumab (n=32) n (%)	Cetuximab (n=92) n (%)	p value
Nausea-vomiting	54 (47.4)	10 (31.3)	41 (44.6)	0.266
Neutropenia	51 (44.7)†	4 (12.5)†‡	48 (52.2) [‡]	<0.001
Diarrhea	30 (26.3) [†] ¶	16 (50.0) [†]	41 (44.6)¶	0.006
Rash	10 (8.8) [†] ¶	20 (62.5)†	56 (60.9)¶	<0.001
Mucositis	37 (32.5)	8 (25.0)	30 (32.6)	0.695
Anemia	29 (25.4)	6 (18.8)	24 (26.1)	0.693
Neuropathy	25 (21.9)	3 (9.4)	21 (22.8)	0.238
Trombocytopenia	20 (17.5)	3 (9.4)	12 (13.0)	0.436
Hand-foot syndrome	6 (5.3)	2 (6.3)	12 (13.0)	0.121
İleus	8 (7.0)	3 (9.4)	3 (3.3)	0.348
Nail disorders	4 (3.5)	2 (6.3)	6 (6.5)	0.577
Febrile neutropenia	1 (0.9)¶	2 (6.3)	8 (8.7)¶	0.016
Dehydration	2 (1.8)	0 (0.0)	5 (5.4)	0.124
Constipation	5 (4.4)	0 (0.0)	2 (2.2)	0.241
Arrhythmia	6 (5.3)¶	0 (0.0)	0 (0.0) ¶	0.011
Deep vein thrombosis	2 (1.8)	3 (9.4)	1 (1.1)	0.085
Subileus	1 (0.9)	0 (0.0)	5 (5.4)	0.058
Blood transfusion	1 (0.9)	0 (0.0)	5 (5.4)	0.058
Malignant hypertension	3 (2.6)	0 (0.0)	2 (2.2)	0.471
Acute renal failure	0 (0.0)¶	0 (0.0)	4 (4.3)¶	0.021
Bowel perforation	1 (0.9)†	3 (9.4)†‡	0 (0.0)‡	0.010
Pustular infection	0 (0.0)†	4 (12.5) ^{†‡}	0 (0.0)‡	<0.001
Epistaxis	3 (2.6)	0 (0.0)	0 (0.0)	0.108
Proteinuria	1 (0.9)	0 (0.0)	1 (1.1)	0.740
Pulmonary embolism	2 (1.8)	0 (0.0)	0 (0.0)	0.227

[†]Bevacizumab vs Panitumumab (p<0.05), [‡]Panitumumab vs Cetuximab (p<0.05), [¶]Bevacizumab vs Cetuximab (p<0.05). Bold numbers denote statistical significance

anti-EGFR (cetuximab/panitimumab) were added to either FOLFIRI or FOLFOX combinations. The demographic, laboratory and clinical characteristics of the patients were determined and the study variables were compared for the three groups.

The clinical and demographic characteristics of the patients are shown in Table 1. The median

Figure 1. Kaplan-Meier overall survival of the BEV, CET and PAN groups (p=0.033).

age and gender distribution of the patients and the rates of rectal cancer were compatible with the previous study performed in this country [3].

Standard FOLFOX and FOLFIRI combinations and the targeted monoclonal antibodies were evaluated for adverse effects (Tables 2 and 3, respectively).

Figure 2. Kaplan-Meier progression-free survival curves of the FOLFOX-BEV, FOLFOX-CET and FOLFOX-PAN groups (p=0.016).

Table 4. Evaluation o	of the effects of categorical	l variables on overall	survival using Kaplan-Meie	er survival analysis

Variables	Number of cases	Event	Survival	S	urvival rat (%)	es	Survival time	Log - Rank	p value
	<i>(n)</i>	(n)	(n)	1 year	3 years	5years			
Gender								1.109	0.292
Male	153	56	63.4	91.1	53.1	34.5	47.7 (39.8-55.7)		
Female	85	30	64.7	92.6	62.7	43.2	51.1 (42.1-60.1)		
Metastasis at diagnosis								20.854	<0.001
No	88	27	69.3	96.6	77.1	62.3	59.4 (50.9-67.9)		
Yes	150	59	60.7	88.2	36.6	16.8	37.7 (30.3-45.1)		
Lung met diagosis								18.144	<0.001
No	203	66	67.5	93.3	63.5	41.4	52.8 (46.0-59.5)		
Yes	35	20	42.9	81.6	15.1	-	22.5 (18.1-26.9)		
Liver met diagnosis								21.570	<0.001
No	113	33	70.8	96.3	73.8	57.8	57.6 (49.6-65.6)		
Yes	125	53	57.6	87.2	34.6	16.2	36.4 (28.6-44.3)		
Treatment								6.819	0.033
Bevacuzimab ^{\$\$}	114	52	54.4	93.4	58.2	36.7	50.0 (42.7-57.2)		
Panitumumab ^{\$\$ ##}	32	10	68.8	79.8	57.0	-	31.7 (23.2-40.2)		
Cetuximab ##	92	24	73.9	93.9	56.6	45.7	44.5 (37.2-51.7)		
1st line treatment response								3.048	0.081
Other	225	83	63.1	91.2	55.4	33.9	46.3 (40.3-52.2)		
Complete response	13	3	76.9	100.0	77.8	77.8	73.2 (52.7-93.8)		
Total	238	86	63.9	91.7	56.6	36.9	49.1 (42.9-55.3)	-	-

\$\$Bevacizumab vs Panitumumab (p=0.017), ## Panitumumab vs Cetuximab (p=0.039). Bold numbers denote statistical significance

ible with findings in literature when the treatment receiving FOLFIRI-PAN [9]. combinations were analyzed. The main adverse efreceiving FOLFIRI-BEV [4]; neuropathy and neu-

The more notable adverse effects were compat- receiving FOLFIRI-CET [8]; and diarrhea in patients

The OS rate was 63.9% for all patients, with fects were neutropenia and perforation in patients 1-, 3- and 5-year overall survival rates being 91.7, 56.6 and 36.9%, respectively. The expected mean tropenia in patients receiving FOLFOX-BEV [5]; survival was 49.1 months (95% CI, 42.9-55.3, Tarash, pustular infections, and diarrhea in patients ble 4). In all cases, the 1-, 3- and 5-year PFS rates

	Number of cases	Event	Survival time	Log rank	p value	
	(<i>n</i>)	<i>(n)</i>	months (95% CI)			
Bevacizumab				1.379	0.240	
FOLFIRI	63	49	18.4 (14.6-22.3)			
FOLFOX	51	38	15.0 (11.6-18.4)			
Panitumumab				1.747	0.186	
FOLFIRI	11	2	31.4 (17.5-45.3)			
FOLFOX	21	10	22.4 (12.2-32.6)			
Cetuximab				7.042	0.008	
FOLFIRI	62	39	18.0 (11.7-24.3)			
FOLFOX	30	7	29.1 (21.6-36.5)			
FOLFIRI				4.447	0.108	
Bevacizumab	63	49	18.4 (14.6-22.3)			
Panitumumab	11	2	31.4 (17.5-45.3)			
Cetuximab	62	39	18.0 (11.7-24.3)			
FOLFOX				7.698	0.016	
Bevacizumab	51	38	15.0 (11.6-18.4)			
Panitumumab	21	10	22.4 (12.2-32.6)			
Cetuximab	30	7	29.1 (21.6-36.5)			
Total	238	145	19.8 (16.8-22.9)	-	-	

Table 5. Evaluation of the monoclonal agents and treatment regimens on progression-free survival

Bold numbers denote statistical significance

Table 6. Evaluation of	f the monoclonal	agents and	treatment regimens on or	verall

Variables	Number of cases	Event	Survival	S	urvival rat (%)	es	Survival time	Log - Rank	p value
	<i>(n)</i>	(<i>n</i>)	<i>(n)</i>	1 year	3 years	5years	-		
Bevacizumab								2.466	0.116
FOLFIRI	63	28	55.6	95.1	64.5	42.9	54.6 (45.1-64.1)		
FOLFOX	51	24	52.9	91.2	48.6	27.9	39.1 (31.8-46.4)		
Panitumumab								5.306	0.021
FOLFIRI	11	0	100.0	100.0	100.0	-	-		
FOLFOX	21	10	52.4	70.6	42.4	-	26.8 (16.0-35.5)		
Cetuximab								4.835	0.028
FOLFIRI	62	15	75.8	96.4	65.8	52.3	48.2 (40.0-56.3)		
FOLFOX	30	9	70.0	88.7	26.6	-	26.0 (19.9-32.0)		
Folfiri								1.463	0.481
BEVACIZUMAB	63	28	55.6	95.1	64.5	42.9	54.6 (45.1-64.1)		
PANITUMUMAB	11	0	100.0	100.0	100.0	-	-		
CETUXIMAB	62	15	75.8	96.4	65.8	52.3	48.2 (40.0-56.3)		
Folfox								10.369	0.006
BEVACIZUMAB [†]	51	24	52.9	91.2	48.6	27.9	39.1 (31.8-46.4)		
PANITUMUMAB [†]	21	10	52.4	70.6	42.4	-	26.8 (16.0-35.5)		
CETUXIMAB	30	9	70.0	88.7	26.6	-	26.0 (19.9-32.0)		
Total	238	145	39.1	53.4	19.6	13.1	19.8 (16.8-22.9)	-	-

[†]Bevacizumab vs Panitumumab was statistically significant (p=0.003). Bold numbers denote statistical significance

Figure 3. Kaplan-Meier overall survival curves of the FOL-FOX-BEV, FOLFOX-CET and FOLFOX-PAN groups (p=0.006).

following first-line treatment were 65.3, 26.1 and 5.6%, respectively, and DFS in patients without initial metastasis was 68.5%. That said, the prognosis was found to be poor in terms of OS in patients who received the PAN combination compared to the patients receiving BEV or CET containing combinations (p=0.017 and p=0.039, respectively, Table 4, Figure 1). Univariate analysis revealed that the presence of initial metastasis, lung metastasis, and liver metastasis at the time of diagnosis had a negative effect on prognosis (p<0.001) (Table 4).

Among the targeted agents, patients who received FOLFOX-BEV showed better PFS than those receiving FOLFOX-PAN (p=0.016), with a similar PFS in those treated with FOLFOX-CET (p=0.148; Table 5; Figure 2). OS was found to be higher in the group receiving FOLFOX-BEV than those treated with FOLFOX-PAN or FOLFOX-CET treatments (p=0.006, survival was 39.1 months, 26.8 months and 26.0 months, respectively) (Table 6; Figure 3). No differences in PFS or OS were observed among the BEV, CET, and PAN groups in combination with FOLFIRI (p=0.108 and p=0.481, respectively) (Tables 5 and 6).

FOLFOX-CET provided better PFS in left colon tumors (p=0.042), while no difference was observed in terms of OS (p=0.205).

Discussion

Demonstration of survival advantages of anti-VEGF (bevacizumab)-containing chemotherapy regimens in patients with mCRC a decade ago, and the subsequent FDA approval of both irinotecan and oxaliplatin combinations have enlightened

the way of the use of new targeted agents [4,11] and anti-EGFR agents cetuximab and panitumumab also received approval following bevacizumab in the treatment of mCRC [7,12].

Treatment with only 5-fluorouracil in cases of mCRC results in less than one year of OS, while the addition of anti-VEGF or anti-EGFR agents to oxaliplatin- or irinotecan-based treatment regimens provides an increased survival of up to 30 months [7,8,10].

KRAS exon 2-4 and NRAS exon 2-4 mutations, which are present in 50% of patients with mCRC, prevent the application of anti-EGFR agents [8,13,14]. The negative effect of the presence of KRAS and NRAS mutations on PFS and OS has been demonstrated in a meta-analysis [15]. Changes in tumor characteristics due to KRAS mutations can turn KRAS mutations into a prognostic factor, while the use of anti-EGFR regimens prior or subsequent to the anti-VGEF treatments in the treatment of KRAS-wild type metastatic patients may increase the survival rates. Furthermore, the addition of anti-EGFR agents to KRAS and NRAS mutant cases has been shown to have potential effect to shorten the duration of survival [7].

In the FIRE-3 trial comparing FOLFIRI-BEV versus FOLFIRI-CET as first-line treatments against mCRC, the median OS was 25 and 28.7 months, respectively [8], although no significant difference was found between these two groups in the present study. In the PEAK study, the highest OS of 43.4 months was achieved with FOLFOX-PAN treatment in left colon tumors, while the median OS was 34.2 months in all cases including both right- and left-colon tumors treated with FOLFOX-PAN compared to 26 months in the present study [9]. The reason for this difference in results may be the inadequate number of cases in PAN group.

Right- and left-colon carcinomas are deemed to be heterogeneous diseases and their prognosis is thought to be different due to their embryological development independent of histological type and differences in the microsatellite stability and tumorigenesis pathways [16]. In a meta-analysis evaluating KRAS wild-type mCRC patients, rightcolon tumors were reported to have lower OS, PFS, and ORR than left-colon tumors [17] and the same meta-analysis revealed that anti-EGFR agents provided OS and PFS benefit in left-colon tumors. The factors that were found to be most predictive of PFS were determined using a multivariate Cox proportional hazards regression analysis in the present study. When other risk factors were corrected, primary tumors in the right colon showed CI:1.014-3.446), which was statistically significant (p=0.045). Furthermore, the better PFS provided by FOLFOX-cetuximab in left-colon tumors was found to be compatible with the findings of previous studies [10,17].

Limitations and Conclusions

The limitations of the present study include its retrospective nature, the inadequate numerical determination of BRAF and NRAS mutations, the low number of patients receiving panitumumab and their shorter duration of follow-up, and the low rate of expected events. This is the first multicenter study to be carried out in Turkey, evaluating treatments, responses to treatment, and adverse effects in patients with KRAS wild-type mCRC. Besides, the authors were also unable to identify any prospective study comparing these three monoclonal antibodies in the international body of literature, although there have been previous studies comparing anti-EGFR and anti-VEGF agents.

Conflict of interests

The authors declare no conflict of interests.

References

- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
- http://kanser.gov.tr/daire-faaliyetleri/kanseristatistikleri/2106-2014-y%C4%B11%C4%B1t%C3%BCrkiye-kanser-istatistikleri.html Ulaşılma tarihi 16/12/2017.
- Nuri F, Aykan, S Yalcın et al. Epidemiology of colorectal cancer in Turkey: A cross-sectional disease registry study (A Turkish Oncology Group trial). Turk J Gastroenterol 2015;26:145-53.
- 4. Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-42.
- Saltz LB, Clarke S, Diaz-Rubio E et al. Bevacizumab in combination with oxaliplatin based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:2013-9.
- 6. Van Cutsem E, Kohne CH, Lang I et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as firstline treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29(S15):2011-9.
- 7. Douillard JY, Siena S, Cassidy J et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-705.
- 8. Heinemann V, von Weikersthal LF, Decker T et al. FOL-FIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:1065-75.
- 9. Schwartzberg LS, Rivera F, Karthaus M et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable,

wildtype KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 2014;32:2240-7.

- Venook A, Niedzwiecki D, Lenz HJ et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5 FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 2014;32(Suppl 15): abstract LBA 3.
- 11. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 2007;12:356-61.
- 12. Bokemeyer C, Van Cutsem E, Rougier P. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:1466-75.
- 13. Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-34.
- 14. Van Cutsem E, Lenz HJ, Kohne CH et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33:692-700.
- 15. Modest DP, Ricard I, Heinemann V, Hegewisch-Becker S, Schmiegel W, Porschen R. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 2016;27: 1746-53.
- 16. Missiaglia E, Jacobs B, D'Ario G et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol 2014;25:1995-2001.
- 17. Arnold D, Lueza B, Douillard JY et al. Prognostic and predictive value of primary tumour side in patients with RAS wild type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017;28:1713-29.