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Summary

Purpose: Head and neck squamous cell carcinoma (HN-
SCC) is a major malignancy worldwide. Ras overexpression 
in HNSCC is known to promote tumor cell growth; therefore, 
inhibition of Ras activation could lead to tumor growth sup-
pression in HNSCC patients. Here, we investigated the effect 
of FTI-277, a farnesyl transferase inhibitor, and GGTI-287, a 
geranyltransferase 1 inhibitor, on the Ras signaling pathway 
in HNSCC cell lines-HEp-2 and HSC-3.

Methods: Cell viability was analyzed using the trypan blue 
staining exclusion assay. The apoptosis of cells was assessed 
by flow cytometry and caspase activation analysis. The ex-
pression levels of proteins were examined using western blot 
analysis.

Results: FTI-277 and GGTI-287 induced cell death, en-
hanced caspase 3 activity, and increased the number of an-

nexin V-positive cells in HEp-2 and HSC-3 cells. FTI-277 and 
GGTI-287 induced apoptosis in HSC-3 cells at much lower 
concentrations than that in HEp-2 cells. FTI-277 and GGTI-
287 decreased the concentration of phosphorylated ERK1/2 
and mTOR via membrane localization of Ras and enhanced 
Bim expression. Furthermore, FTI-277 and GGTI-287 in-
duced cell death in v-H-Ras-transfected NIH3T3 (NW7) cells 
and not in empty vector-transfected NIH3T3 (NV20) cells. 

Conclusion: FTI-277 and GGTI-287 may be useful as 
potential therapeutic agents for treating HNSCC patients; 
moreover, farnesyl transferase and geranylgeranyltrans-
ferase 1 inhibitors can be further developed as anticancer 
agents.
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Introduction

 Head and neck squamous cell carcinoma (HN-
SCC) is one of the major cancers worldwide and 
includes malignancies arising in the mucous mem-
branes of the oral cavity, pharynx, nose, nasal cav-
ity and larynx [1,2]. Remedial strategies for HNSCC 
include surgery, radiotherapy and chemotherapy; 
however, the prognosis for patients in the advanced 
stage of HNSCC is poor [3]. 

 Ras family proteins, such as H-Ras, K-Ras and 
N-Ras, are activated in many human cancers; ac-
tivation of Ras leading to prenylation is acceler-
ated via mutation of receptor tyrosine kinases, in-
cluding epidermal growth factor receptor, c-MET, 
and platelet-derived growth factor receptor, and 
via the constitutive activation of these receptors 
[4-7]. Mutations in the Ras family proteins have 
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been implicated in the pathogenesis of various 
cancers including lung, pancreatic, and colorectal 
carcinomas [7-9]. Although the rate of Ras muta-
tion is relatively low in HNSCC, overexpression of 
the wild-type K-Ras protein in HNSCC cells has 
been reported and is known to contribute to tu-
mor growth in HNSCC [6,8,10]. K-Ras promotes the 
activation of a downstream kinase cascade, which 
includes c-Raf/mitogen-activated protein kinase ki-
nase 1/2 (MEK1/2)/extracellular signal regulated-
protein kinase 1/2 (ERK1/2) and phosphoinositol-3 
kinase/mammalian target of rapamycin (mTOR), 
leading to cancer cell growth, survival, and me-
tabolism [11,12]. Therefore, it is possible that the 
suppression of the Ras signaling cascade could pre-
vent Ras-dependent cell growth in HNSCC cells. 
 Farnesyl transferase and geranylgeranyltrans-
ferase 1 are essential enzymes for the prenylation 
of Ras proteins; they act by binding to farnesyl py-
rophosphate and geranylgeranyl pyrophosphate 
[13-15]. Previous reports indicate that farnesyl 
transferase inhibitors, such as FTI-277, induce 
cell death via the inhibition of Ras farnesylation, 
and geranylgeranyltransferase 1 inhibitors, such 
as GGTI-287, promote apoptosis through the sup-
pression of the geranylgeranylation of Ras [16,17]. 
Additionally, Ras prenylation inhibitors, including 
statins (3-hydroxy-3-methylglutaryl-coenzyme A 
reductase inhibitors) and nitrogen-containing bis-
phosphonates, induce apoptosis via the inhibition 
of Ras signaling pathways [18-22]. However, the 
mechanisms by which FTI-277 or GGTI-287 induce 
cell death by modulating the Ras signaling path-
ways in HNSCC cells remain unclear. Therefore, in 
the present study, we investigated the mechanism 
by which FTI-277 and GGTI-287 induce cell death 
in HNSCC cell lines, such as HEp-2 and HSC-3 cells.

Methods 

Materials

 FTI-277 and GGTI-287 were purchased from Merck 
Millipore (Nottingham, UK). A stock solution of 10 mM 
FTI-277 was prepared by dissolving it in water and 10 
mM GGTI-287 stock solution was prepared by dissolving 
it in dimethyl sulfoxide before use in the experiments 
described below.

Cell culture

 HSC-3 and HEp-2 cells were obtained from the Japa-
nese Collection of Research Bioresources Cell Bank (Osa-
ka, Japan) and DS Pharma Biomedical Co., Ltd (Osaka, 
Japan), respectively. These cells were cultured in mini-
mal essential medium (Sigma, St. Louis, MO, USA) sup-
plemented with 10% fetal bovine serum (FBS), 100 µg/
ml penicillin, 100 U/ml streptomycin (Gibco, Carlsbad, 
CA, USA), and 25 mM HEPES (pH 7.4; FUJIFILM Wako, 

Tokyo, Japan) in a humidified atmosphere containing 
5% CO2 at 37°C. NV20 control (empty vector-transfected 
NIH3T3 cells) and NW7 (v-H-Ras-transfected NIH3T3 
cells) cells were supplied by Dr. Hiwasa (Chiba Univer-
sity, Chiba, Japan) and cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, Sigma, St. Louis, MO, USA) 
supplemented with 10% FBS, 100 µg/ml penicillin, 100 
U/ml streptomycin (Gibco, Carlsbad, CA, USA), and 25 
mM HEPES (pH 7.4; FUJIFILM Wako, Tokyo, Japan) in 
a humidified atmosphere containing 5% CO2 at 37°C.

Trypan blue dye exclusion assay

 The effect of FTI-277 and GGTI-287 on cell viability 
was assessed using the trypan blue dye exclusion assay 
as described previously [23,24]. 

Measurement of the proteolytic activity of caspase 3

 The activity of caspase 3 was determined using 
a caspase-3/CPP32 fluorometric assay kit (BioVision, 
Mountain View, CA, USA) according to the manufactur-
er’s instructions. The cells were treated with FTI-277 
and GGTI-287 for 36 h. After incubation, the cells were 
washed with PBS and lysed using the lysis buffer in-
cluded in the caspase-3/CPP32 fluorometric assay kit. 
The cell lysates were treated with 1 mM Asp-Glu-Val-
Asp-7-amino-4-trifluoromethylcoumarin (AFC) at 37°C 
for 1 h. The concentration of AFC released from the sub-
strate was measured on a fluorescence spectrophotom-
eter (Hitachi, Tokyo, Japan) at emission and excitation 
wavelengths of 505 and 400 nm, respectively.

Annexin V apoptosis assay

 Apoptosis was measured using an annexin V-FITC 
apoptosis detection kit (Becton Dickinson, Bedford, MA, 
USA) according to the manufacturer’s instructions. Brief-
ly, the cells were washed twice in PBS, incubated in bind-
ing buffer containing annexin V-FITC for 15 min at room 
temperature, and analyzed using a BD-LSR Fortessa cell 
analyzer (Becton Dickinson, Bedford, MA, USA).

Western blot analysis

 Whole cell lysates were extracted using lysis buffer 
(100 mM Tris-HCl (pH 7.4), 1 mM EDTA, 0.5% NP-40, 
1 µM pepstatin, 1 µM leupeptin, 2 mM sodium ortho-
vanadate, 1 µM calpain inhibitor, phosphatase inhibitor 
cocktail I/II, and 1 mM phenylmethylsulfonyl fluoride). 
The cytoplasmic and membrane fractions were extracted 
using a ProteoExtract Subcellular Proteome Extraction 
Kit (Merck Millipore, USA). The protein content in the 
lysates was quantitated using a bicinchoninic acid (BCA) 
protein assay kit (FUJIFILM Wako, Tokyo, Japan). The 
cell lysates (40 µg of protein) were separated on SDS–po-
lyacrylamide gels and transferred onto polyvinylidene 
difluoride (PVDF) membranes (GE Healthcare, Buck-
inghamshire, UK). The membranes were blocked with 
3% skimmed milk and incubated overnight at 4°C with 
the following antibodies: anti-phospho-mTOR (#2971), 
anti-phospho-ERK1/2 (#9101), anti-mTOR (#2972), anti-
ERK1/2 (#9102), anti-Bcl-2 Interacting Mediator of cell 
death (Bim) (H-191) (Santa Cruz Biotechnology, CA, 
USA), and anti-β-actin (Sigma, USA). The membranes 
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Figure 1. FTI-277 and GGTI-287 decrease the viability of HEp-2 cells and HSC-3 cells. HEp-2 cells were treated with 
1–40 µM concentrations of (A) FTI-277 or (B) GGTI-287, and HSC-3 cells were treated with 0.5–10 µM concentrations 
of (C) FTI-277 or (D) GGTI-287. The trypan blue exclusion assay was performed in the HEp-2 and HSC-3 cells after 24, 
48, and 72 h of incubation with FTI-277 and GGTI-287. The values are expressed as the mean ± SD of five independent 
experiments. *indicates p<0.01 vs. control (ANOVA with Dunnett’s test).

Figure 2. An increase in the percentage of annexin V-positive cells and activity of caspase 3 is associated with FTI-
277- or GGTI-287-induced cell death. HEp-2 and HSC-3 cells were exposed to the indicated concentrations of FTI-277 
and GGTI-287 for 36 h. (A) The activity of caspase 3 was measured and expressed as picomoles of caspase 3 substrate 
DEVD-AFC cleaved proteolytically per hour per mg of protein. (B) Apoptosis was measured using an annexin V-FITC 
apoptosis detection assay kit, and values are expressed as a percentage of annexin V-positive cells. The values are ex-
pressed as the mean ± SD of five independent experiments. *indicates p<0.01 vs. control (ANOVA with Dunnett’s test).
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were incubated with horseradish peroxidase-coupled 
sheep anti-rabbit IgG (GE Healthcare, Buckinghamshire, 
UK) for 1 h at room temperature. The reactive proteins 
were visualized using Luminata Forte Western HRP sub-
strate (Merck Millipore, USA) according to the manufac-
turer’s instructions. 

Statistics

 All results are expressed as the mean ± standard 
deviation (SD) of at least five independent experiments. 
Multiple comparisons of the data were performed us-
ing one-way analysis of variance (ANOVA) with Dun-
nett’s test. P values <0.05 were considered statistically 
significant.

Results

FTI-277 and GGTI-287 decrease the viability of HEp-2 
and HSC-3 cells

 The effect of FTI-277 and GGTI-287 on the via-
bility of HEp-2 and HSC-3 cells was assessed using 
the trypan blue exclusion assay. HEp-2 cells were 
treated with 1, 5, 10, 20, and 40 µM concentrations 
of FTI-277 or GGTI-287 for 24, 48, and 72 h. After 
treatment with 1, 5, 10, 20, and 40 µM concen-
trations of FTI-277 for 72 h, the viability of the 
HEp-2 cells was 97.9, 98.9, 89.1, 78.3, and 41.5%, 
respectively (Figure 1A). After treatment with 1, 
5, 10, 20, and 40 µM concentrations of GGTI-287 
for 72 h, the viability of the HEp-2 cells was 98.6, 
94.3, 89.9, 76.0, and 40.3%, respectively (Figure 1B). 
HSC-3 cells were incubated with 0.5, 1, 2.5, 5, and 
10 µM concentrations of FTI-277 or GGTI-287 for 
24, 48, and 72 h. After treatment with 0.5, 1, 2.5, 
5, and 10 µM FTI-277 for 72 h, the viability of the 
HSC-3 cells was 89.7, 69.1, 52.9, 33.4, and 23.0%, 
respectively (Figure 1C). After treatment with 0.5, 
1, 2.5, 5, and 10 µM GGTI-287 for 72 h, the viabil-
ity of the HSC-3 cells was 94.6, 80.9, 57.4, 38.7, 
and 25.3%, respectively (Figure 1D). These results 
indicate that FTI-277 and GGTI-287 decreased the 
viability of the HEp-2 and HSC-3 cells in a concen-
tration-dependent manner; moreover, FTI-277 and 
GGTI-287 induced cell death in the HSC-3 cells at 
much lower concentrations than that in the HEp-2 
cells.

FTI-277 and GGTI-287 induce apoptosis by the activa-
tion of caspase 3

 Apoptosis is induced by an interaction be-
tween various initiator and effector caspases. 
Among these, caspase 3 is considered a crucial 
effector of the apoptosis pathway [20]. Therefore, 
we investigated the effect of FTI-277 and GGTI-
287 on caspase 3 activation in HEp-2 and HSC-3 
cells. Treatment with FTI-277 and GGTI-287 led 

to a significant increase in the activity of caspase 
3 in the HEp-2 and HSC-3 cells (Figure 2A). Ad-
ditionally, we observed that treatment with FTI-
277 and GGTI-287 significantly increased the per-
centage of annexin V-positive cells in the HEp-2 
and HSC-3 cells (Figure 2B). Thus, these results 
indicate that FTI-277 and GGTI-287 induced apo-
ptosis in the HEp-2 and HSC-3 cells via caspase 
3 activation.
 FTI-277 and GGTI-287 suppress the phospho-
rylation of ERK and mTOR and increase the ex-
pression of Bcl-2 Interacting Mediator of cell death 
(Bim). 
 FTI-277 is a farnesyl transferase inhibitor, 
and GGTI-287 is a selective peptidomimetic inhib-
itor of geranylgeranyltransferase 1. Ras prenyla-
tion by farnesyl pyrophosphate and geranylgera-
nyl pyrophosphate via farnesyl transferase and 
geranylgeranyltransferase 1, respectively, is re-
quired for the membrane localization of Ras [17]. 
Therefore, we confirmed the effect of FTI-277 and 
GGTI-287 on the membrane localization of Ras 
and the phosphorylation of ERK1/2 and mTOR, the 
downstream signaling molecules of Ras, by west-

Figure 3. FTI-277 and GGTI-287 suppress Ras membrane 
localization and phosphorylation of ERK1/2 and mTOR and 
increase the expression of Bim. HEp-2 and HSC-3 cells were 
treated with FTI-277 and GGTI-287 for 2 days. The cyto-
plasmic and membrane fractions were separated on SDS-
PAGE; the proteins were transferred on PVDF membranes 
and probed with antibodies against Ras, phospho-ERK1/2, 
phospho-mTOR, ERK1/2, mTOR, Bim, Na/K ATPase, and 
β-actin.
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ern blotting. Treatment with FTI-277 and GGTI-
287 led to significant inhibition of the membrane 
localization of Ras and a decrease in the expres-
sion of phosphorylated ERK1/2 and mTOR in the 
HEp-2 and HSC-3 cells (Figure 3). ERK1/2 and 
mTOR are known to regulate the expression of 
Bim [18,20]. We found a significant increase in the 
concentration of Bim in the HEp-2 and HSC-3 cells 
treated with FTI-277 and GGTI-287 (Figure 3). 
Thus, our results indicate that FTI-277 and GGTI-
287 increased the expression of Bcl-2 Interacting 
Mediator of cell death (Bim) via the inhibition of 
the phosphorylation of ERK1/2 and mTOR in the 
HEp-2 and HSC-3 cells. We previously reported 
that the sensitivity of head and neck carcinoma 
cells to statin-induced apoptosis is related to their 
Ras expression status [19]. To examine the effect 
of the overexpression of Ras on the sensitivity of 
head and neck carcinoma cells toward FTI-277 
and GGTI-287, we evaluated the effect of FTI-277 
and GGTI-287 on cell death in v-H-Ras-transfected 
NIH3T3 (NW7) cells and empty vector-transfected 

NIH3T3 (NV20) cells. We observed that the ex-
pression of Ras was significantly higher in the 
NW7 cells than in the NV20 cells, and Ras was 
localized on the membrane of the NW7 cells (Fig-
ures 4A and B). Treatment with FTI-277 and GGTI-
287 led to a significant decrease in the viability 
of the NW7 cells compared to that of the NV20 
cells (Figure 4C). Overall, our results indicate that 
FTI-277 and GGTI-287 induced apoptosis in Ras-
overexpressing cells. 

Discussion

 FTI-277 is known to induce cell death via the 
activation of Ras through farnesyl transferase in 
SH-SY5Y neuroblastoma cells [25]. IMB-1406, a 
farnesyl transferase inhibitor, has also been re-
ported to exhibit antitumor activity against lung, 
liver, colon, and breast cancer cells [26]. GGTI 
P61A6, a geranylgeranyl transferase inhibitor, 
suppressed tumor cell growth and induced apo-
ptosis in an MMTV-v-H-Ras transgenic mouse 

Figure 4. Overexpression of Ras in cells is correlated with their sensitivity toward FTI-277 and GGTI-287. (A) NV20 
(control, empty vector-transfected) and NW7 cells (v-H-Ras-transfected) were cultured for 2 days. Whole cell lysates 
were separated on SDS-PAGE; the proteins were transferred on PVDF membranes and probed against Ras and β-actin 
antibodies. (B) The cytoplasmic and membrane fractions were probed against Ras, Na/K ATPase, and β-actin antibod-
ies. (C) The viability of the NV20 and NW7 cells treated with 5 µM FTI-277 and GGTI-287 for 72 h as measured by the 
trypan blue dye exclusion assay. *indicates p<0.01 vs. control (ANOVA with Dunnett’s test).
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model and a lung adenocarcinoma A549 xeno-
graft model [27]. In this study, we demonstrate 
that FTI-277 and GGTI-287 induce apoptosis in 
HEp-2 and HSC-3 cells via the activation of cas-
pase 3.
 Farnesyl transferase and geranylgeranyltrans-
ferase 1 are essential for Ras membrane localization 
following Ras prenylation [28]. We observed that 
FTI-277 and GGTI-287 suppressed Ras membrane 
localization and the activation of Ras downstream 
signal molecules, namely ERK1/2 and mTOR, and 
increased the expression of Bim in HEp-2 and HSC-
3 cells. R115777, a farnesyl transferase inhibitor, 
suppressed ERK1/2 phosphorylation leading to 
apoptosis in lung cancer cells [29]. Additionally, 
FTI-277 has been reported to suppress the mTOR/
p70S6kinase pathway in multiple myeloma cells 
[30]. Geranylgeranyltransferase inhibitors, includ-
ing GGTI-287, are known to induce apoptosis via 
the suppression of Ras prenylation [17]. Statins 
and nitrogen-containing bisphosphonates sup-
pressed the Ras/ERK1/2 and Ras/mTOR pathways 
via farnesyl pyrophosphate and geranylgeranyl py-
rophosphate and enhanced the expression of Bim, 
leading to the activation of caspase 3 in various 
cancer cells [18-20]. Furthermore, the sensitivity 
of HNSCC cells to statins was correlated with their 
Ras expression status [18]. Our findings suggest 
that FTI-277 and GGTI-287 induced apoptosis via 
the suppression of Ras prenylation, the activation 
of ERK1/2 and mTOR, and an increase in the ex-
pression of Bim. We also demonstrated that the 

sensitivity of head and neck carcinoma cells to FTI-
277 and GGTI-287 was correlated with their Ras 
expression status. 

Conclusion

 This study provides evidence that FTI-277 and 
GGTI-287 induce apoptosis by enhancing the ex-
pression of Bim via the suppression of the Ras/ERK 
and Ras/mTOR pathways. Additionally, the sensi-
tivity of HNSCC cells to treatment with FTI-277 
and GGTI-287 was found to be associated with the 
expression level of Ras, suggesting that FTI-277 
and GGTI-287 may act more effectively on tumors 
with increased expression of Ras. Thus, our find-
ings support the development of farnesyl trans-
ferase or geranylgeranyl transferase inhibitors as 
potential anticancer agents.
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