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Summary

Purpose: To explore the expression and clinical significance 
of factors associated with multiple myeloma (MM) and iden-
tify new diagnostic markers.

Methods: Two gene expression array data sets (GSE6477 
and GSE5900) were downloaded and differentially expressed 
genes (DEGs) in bone marrow from patients with MM and 
healthy donors analyzed. Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment and Gene Ontology annota-
tion of DEGs was conducted and a protein-protein interac-
tion network generated. Plasma and bone marrow samples 
from patients with MM were analyzed for cytokine expres-
sion by ELISA and correlations between cytokine levels and 
clinical indicators evaluated. 

Results: Of 908 DEGs, 416 were up-regulated and 492 
down-regulated. Further, 161 proteins pairs and 21 nodes 
were detected, and eight hub genes (CXCL2, CXCL8, CXCL12, 
ELANE, LCN2, CX3CL1, CCL13, and CCL27) screened out. 
Expression levels of CXCL8, CXCL2, CXCL12, LCN2, and 

CCL13 were low in CD138+ plasma cells, and expression lev-
els of the eight cytokines differed significantly in peripheral 
blood plasma from patients with MM and healthy controls. 
ROC curve analysis determined optimal diagnostic thresh-
olds determined for: CCL27 (189 ng/mL), CXCL2 (313 ng/L), 
CX3CL1 (132 ng/L), CCL13 (235 pg/mL), CXCL8 (884 ng/L), 
ELANE (50 µg/L), LCN2 (8 µg/L), and CXCL12 (2525 pg/
mL).

Conclusions: CX3CL1, CCL13, CXCL8, and CXCL12 levels 
were positively correlated with those of hemoglobin and β2 
microglobulin (β2-MG); CCL27 and CXCL2 with β2-MG; and 
CCL13 and ELANE with white blood cell count and age, re-
spectively. CCL27, CXCL2, and β2-MG levels were associated 
with MM incidence.
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analysis, gene ontology annotation, gene expression, Cox 
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Introduction

Multiple myeloma (MM) is a malignant tumor 
characterized by abnormal plasma cell (PC) pro-
liferation, with monoclonal immunoglobulin or 
light chain (M-protein) overproduction. Age, lac-
tate dehydrogenase (LDH) level, cytogenetic pro-
file, International Staging System (ISS) stage, and 
curative effect are independent prognostic factors 

for patients with MM [1,2]. The pathogenesis and 
prognosis of MM have been the focus of consid-
erable clinical research [3-5], and the cytogenetic 
and genomic characteristics of tumors can reflect 
their cell biological features and provide impor-
tant information regarding disease progression and 
prognosis [5,6]. 

This work by JBUON is licensed under a Creative Commons Attribution 4.0 International License.
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Although there have been advances in the treat-
ment of MM over recent years, the disease remains 
an incurable malignancy [7]. The evolution from 
monoclonal gammopathy of unknown significance 
(MGUS), to smoldering myeloma (SMM), MM is a 
complex process influenced by genomic instabil-
ity, epigenetic features, and microenvironmental 
signaling [5,8]. The bone marrow microenviron-
ment (BMM) is important for the differentiation, 
migration, proliferation, survival and drug resist-
ance of malignant PC in patients with MM. The 
BMM contains macrophages, osteoblasts, endothe-
lial cells and mesenchymal cells, which influence 
the survival and proliferation of MM cells [9]. The 
interaction between MM cells and the BMM is a 
research hotspot, and various studies have identi-
fied the importance of this relationship in disease 
pathogenesis and progression [7,10]. 

Inflammatory cytokines contribute to the ini-
tiation and progression of cancer, and cytokines 
produced by cancer or cancer-related cells (such as 
immune infiltrating cells) in the tumor microen-
vironment can support cancer cell growth, as well 
as potentially inducing epigenetic changes and 
genomic instability [1,11].

Analysis of databases incorporating genome-
scale data on gene expression, protein sequence, 
gene functional annotation, protein interaction 
networks and prediction of genes contributing to 
disease can be based on a single data type or in-
tegrate multiple data classes [12], where the lat-
ter often provides better prediction accuracy than 
the former [13]. New risk stratification tools are 
required to facilitate understanding of MM and 
optimize treatment. The GEO database is a free 
source of globally acquired gene sequencing and 
array-based data [14]. In this study, we analyzed 
two MM data sets in the GEO database, focusing on 
cytokine-cytokine receptor interaction. Transcrip-
tional mis-regulation in cancer, cell adhesion mole-
cules (CAMs) and related factors, including, CXCL8, 
CXCL2, LCN2, CXCL12, CCL27, CCL13, CX3CL1, and 
ELANE expression were screened out, and tested in 
samples from 64 patients with MM, with the aim 
of determining the expression pattern and func-
tions of these eight cytokines in the context of this 
disease. Further, correlations of these factors with 
clinical indicators, including hemoglobin, LDH, 
and β2 microglobulin (β2-MG) were also analyzed.

Methods 

Affymetrix microarray data

Two gene expression profile data sets, GSE6477 
and GSE5900, including data from CD138+ PCs selected 
from bone marrow samples, were analyzed. GSE6477 

contained 162 samples, including 15 healthy donors, 
22 patients with MGUS, 73 with newly diagnosed MM 
(NMM), 28 patients with recurrent MM (RMM), and 24 
patients with SMM. GSE5900 contained data from 78 
samples, including 22 healthy donors, 44 patients with 
MGUS, and 12 patients with SMM. The Affy package in 
R was used to transform CEL files into expression value 
matrices, which were then normalized using RMA meth-
ods [15]. Subsequently, the Bioconductor package in R 
was used to convert probe data to gene expression data. 
Expression levels detected by some probes were too high 
or too low for accurate analysis; these were identified as 
outliers and excluded from further analyses. When mul-
tiple probes corresponded to a single gene, the average 
expression value was used to screen for differentially 
expressed genes (DEGs). Mean gene expression values 
were calculated, and the threshold used to define DEGs 
was |log2 fold-change| > 1. 2 and adjusted p < 0.05.

Gene ontology (GO) and pathway enrichment analyses

Database for Annotation, Visualization and Inte-
grated Discovery (DAVID; version 6.8) [16] was used to 
identify GO functions and pathways enriched for spe-
cific DEGs in the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) (http://www.genome.ad.jp/kegg/) [17] and 
GO (http://www.geneontology.org) [18] databases, along 
with the R package, Goplot [15], with an adjusted p value 
threshold of < 0.05.

Construction of a protein-protein interaction (PPI) network

The interactive gene retrieval tool database, STRING 
(V10.5; https://string-db.org/) [19] is a useful platform 
for studying interactions between experimentally evalu-
ated and predicted proteins. Co-expression experiments, 
co-occurrence, gene fusion, and neighborhood analysis 
were conducted using Cytoscape (version 3.60) [20]. In-
teractions between protein pairs in the database were 
comprehensively scored. To detect correlations between 
key genes in the network and potential PPIs, DEGs were 
mapped to the data, with the critical value set at a com-
bined score > 6. Degree was used to describe the mean-
ing of protein nodes in the network. These three proto-
cols were all processed using the R software package, 
igraph version 4.0.1. [21].

Module analysis

Protein networks [22], such as network modules, 
contain useful information about the biological func-
tions of biomolecules. Prominent clustering modules 
were determined using the Cytoscape software package, 
molecular complex detection (MCODE). Next, the DA-
VID online tool was used to analyze KEGG pathways 
enriched for DEGs between modules. Cut-off values of 
count ≥ 2 and EASE ≤ 0.05, and an MCODE score > 6 were 
used as threshold values for follow-up analysis.

Collection of clinical specimens

Bone marrow and peripheral plasma samples were 
collected from 64 patients newly diagnosed with MM 
from March 2019 to September 2020, including 39 
males and 25 females, aged 45-86 years (mean 60.48). 
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According to the ISS, 14 patients had Phase I, 23 pa-
tients Phase II, and 27 Phase III disease. Further, 25 
cases were complicated with pneumonia, 26 with car-
diovascular disease and 11 with diabetes. FISH analysis 
showed that four cases had t (11,14) and four had t (4,14) 
translocations; four had deletion of 14q32, six deletion 
of 1q21, two of IgH, three TP53, and one case each had 
del (20q-), t (14,20), and del (7p-) mutations; four of 
these patients had dual mutations. Peripheral plasma 
samples from 21 patients with lumbar disc herniation 
and lumbar hyperosteogeny admitted to the Depart-
ment of Spine and Orthopedics were used as the con-
trol group. Patients with autoimmune diseases were 
excluded. Samples were centrifuged at 2000 × g and 
supernatants collected and frozen at –80°C. All patients 
signed informed consent. 

Hub gene determination in bone marrow and peripheral 
blood plasma samples

ELISA kits (Shanghai Hengyuan Biological Co., Ltd., 
Shanghai, China) were used to verify the expression of 
various cytokines in 64 patients newly diagnosed with 
MM and 21 controls. 

Statistics

SPSS 21.0 package (SPSS Inc. Chicago, IL, USA) was 
used for statistical analyses. Chi square was used to com-
pare differences between groups. Continuous data are 
presented as mean ± SD. Nominal significance was con-
sidered for raw p values<0.05. Univariate analysis was 
used to determine the association of clinical variables 
and genes with myeloma endpoints.

Results

Identification of DEGs

Analysis of gene expression profile data from 
GSE5900 and GSE6477 identified a total of 32586 
expression probes. DEGs were defined as those 
with |log 2 (fold change) | ≥ 1.2 and an adjusted 
p value < 0.05; 908 DEGs meeting these criteria 
were obtained, of which 394 were screened from 
GSE5900 (253 up-regulated and 141 down-regu-
lated) and 514 from GSE6477 (163 up-regulated 
and 351 down-regulated). Heat maps and volcano 
plots showing the distribution of DEGs from each 
dataset are presented in Figure 1.

Analysis of gene ontology functions and KEGG path-
ways enriched for DEGs

To identify disease-related genes, 30 pathways 
were identified by screening 718 GO functional 
pathways for DEG enrichment, including lympho-
cyte regulation, neutrophil activation, neutrophil 
degranulation, lymphocyte proliferation, and hu-
moral immune response. The DAVID tool (version 
6.8) was also used for the KEGG pathway analysis 
of screened DEGs, which were enriched in 10 KEGG 

pathways, including cytokine-cytokine receptor in-
teraction, transcriptional mis-regulation in cancer, 
CAMs, hematopoietic cell lineage, systemic lupus 
erythematosus, Staphylococcus aureus infection, 
melanoma, malaria, asthma, and thyroid cancer. 
Enriched DO pathways included connective tis-
sue cancer, obstruction lung disease, bone cancer, 
osteosarcoma, dermatitis, demyelinating disease, 
multiple sclerosis, myeloid leukemia, vasculitis, 
and leukocyte disease (Figure 2).

Protein-protein interaction (PPI) network construction

Using STRING and PPI analysis, 161 pairs 
of proteins, 21 nodes, and 8 highly DEGs were 
screened out, including CXCL2 (degree=37), CXCL8 
(degree=103), CXCL12 (degree=66), CCL13 (de-
gree=25), CCL27 (degree=31), CXCL1 (degree=31), 
ELANE (degree=48), and LCN2 (degree=37) (Figure 
3; Table 1).

Expression of screened genes in CD138+ PCs

CD138+ PC mRNA data from both the GSE5900 
and GSE6477 data sets was analyzed. In GSE5900, 
none of the screened genes were up-regulated 
in MM compared with healthy controls, while 
CXCL8, CXCLl2, LCN2, CXCL12, CCL27, and CCL13 

Gene MCODE_Score MCODE_Cluster Degree

ELANE 14 Cluster 1 48

CXCL8 17 Cluster 1 103

DEFA4 14 Cluster 1 24

CXCL2 17 Cluster 1 37

LCN2 14 Cluster 1 37

ANXA1 17 Cluster 1 36

FPR3 17 Cluster 1 28

CXCL12 17 Cluster 1 66

CX3CL1 17 Cluster 1 31

CCL13 17 Cluster 1 25

C5AR1 17 Cluster 1 39

GRM2 17 Cluster 1 23

DRD4 17 Cluster 1 24

CCL27 17 Cluster 1 31

HTR1D 17 Cluster 1 18

PYY 17 Cluster 1 23

MCHR1 17 Cluster 1 29

GPR183 17 Cluster 1 26

OXGR1 17 Cluster 1 17

P2RY13 17 Cluster 1 24

HCAR3 17 Cluster 1 18

Table 1. The significant modules identified from the pro-
tein-protein interaction network using the molecular com-
plex detection method with a score > 14
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Figure 1. Heat map of differentially expressed genes. The depth of color reflects the level of differential expression (log 
fold-change). The two vertical lines indicated the 2-fold change boundaries and the horizontal line indicates the statisti-
cal significance threshold (Adj-p< 0.05). Genes with a fold change ≥1.2 and statistical significance are indicated by red 
dots (up-regulated) and blue dots (down-regulated). A: GSE5900 heat map. B: GSE5900 volcano plot. C: GSE6477 heat 
map. D: GSE6477 volcano plot.
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Figure 2. Gene ontology terms and pathways enriched for differentially expressed genes (DEGs). The size of dots cor-
responds to the DEG count and the color represents the level of significance of the term, with larger dots representing 
higher counts. A: GO pathway. B: KEGG pathway. C: DO pathway. 

Figure 3. Topological properties of the PPI network. Using STRING and PPI analysis, and choosing 161 pairs of proteins, 
21 nodes and 8 highly differentially expressed genes were screened out.
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Figure 4. Expression profiles of hub genes generated from microarray data. Eight differentially expressed genes, CXCL2, 
CXCL8, CXCL12, CCL13, CCL27, CX3CL1, ELANE, and LCN2, were detected in GSE5900 and GSE6477. Comparison of Con-
trol, MGUS, and SMM groups in GSE900. Comparison of Control, MGUS, NMM, RMM, and SMM groups in GSE6477. 
A: GSE5900. B: GSE6477.
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expression levels were downregulated, and those 
of CX3CL1 and ELANE did not differ significantly. 
In GSE6477, ELANE, CXCL8, CXCL2, LCN2, CXCL12, 
and CCL13 levels were down-regulated MM com-
pared with controls, while those of CX3CL1 and 
CCL27 were upregulated in both data sets. Hence, 
expression levels of CXCL8, CXCL2, CXCL12, LCN2, 
and CCL13 were decreased in both datasets, while 
that of CCL27 was upregulated (Figure 4).

Expression of hub genes in bone marrow and plasma

CXCL2, CXCL8, CXCL12, ELANE, LCN2, CX3CL1, 
CCL13, and CCL27 expression levels were assessed 
in bone marrow and peripheral blood plasma sam-
ples. Levels in peripheral blood from patients with 
MM differed significantly from those from healthy 
controls (p < 0.05); however, there was no signifi-
cant difference between MM bone marrow and MM 
peripheral plasma samples (Table 2).

Gene group ͞x±s test-statistic p value

CCL27 (pg/ml) Bone marrow 207.81±19.97a 7.165 0.000

plasma 199.89±22.34b 5.949 0.000

control 166.70±17.50 

CX3CL1 (ng/L) Bone marrow 169.88±29.66a 6.008 0.000

plasma 163.28±28.03b 5.956 0.000

control 121.18±22.87

CXCL2 (ng/L) Bone marrow 329.16±36.79a 5.179 0.000

plasma 318.81±39.46b 4.392 0.000

control 275.66±30.50

CCL13 (pg/ml) Bone marrow 261.41±36.60a 4.853 0.000

plasma 267.67±33.91b 6.208 0.000

control 218.70±17.30

CXCL8 (ng/ml) Bone marrow 1003.09±158.43a 4.954 0.000

plasma 1011.26±173.53b 5.221 0.000

control 791.76±117.16

ELANE (ug/L) Bone marrow 50.92±6.94a 2.652 0.011

plasma 52.96±8.46b 3.53 0.001

control 45.65±6.03

LCN2 (ug/L) Bone marrow 8.09±1.11a 4.065 0.000

plasma 7.99±1.02b 4.297 0.000

control 6.92±0.71

CXCL12 (pg/ml) Bone marrow 2678.49±452.02a 5.875 0.000

plasma 2874.02±476.21b 7.759 0.000

control 1994.0±290.48

Note: ‘a’ is the comparison between the bone marrow group of MM patients and the normal peripheral blood group; ‘b’ is the peripheral blood 
group of MM patients compared with the normal peripheral blood group

Table 2. Changes of cytokines in bone marrow and plasma of MM

Test result variable Area Standard error.a Sig.b 95% CI

The lower limit ceiling

CCL27(pg/ml) 0.898 0.035 0.000 0.829 0.967

CXCL2(ng/L) 0.832 0.047 0.000 0.741 0.924

CX3CL1(ng/L) 0.879 0.041 0.000 0.799 0.960

CCL13(pg/ml) 0.892 0.035 0.000 0.824 0.960

CXCL8(ng/L) 0.850 0.043 0.000 0.765 0.935

ELANE(ug/L) 0.737 0.055 0.001 0.629 0.846

LCN2(ug/L) 0.792 0.049 0.000 0.696 0.888

CXCL12(pg/ml) 0.938 0.025 0.000 0.890 0.987

Table 3. Area under ROC curve of each cytokine
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Gene diagnostic threshold sensitivity 1- Specificity Specificity Youden’s Index

CCL27 189.355 (ng/ml) 0.797 0.0476 0.952 1.749

CXCL2 313.430 (ng/L) 0.625 0.0476 0.952 1.577

CX3CL1 132.675 (ng/L) 0.875 0.286 0.714 1.589

CCL13 235.350 (pg/ml) 0.8125 0.143 0.857 1.670

CXCL8 884.205 (ng/L) 0.781 0.143 0.857 1.638

ELANE 50.34 (ug/L) 0.625 0.190 0.810 1.435

LCN2 7.770 (ug/L) 0.095 0.095 0.905 1.545

CXCL12 2525.495 (pg/ml) 0.750 0.000 1.000 1.750

Table 4. The optimal diagnostic threshold of each cytokine

Gene group Myeloma /case Control/case x2 p value

CCL27 ≥189.355(ng/ml) 49 1 30.755 0.000

<189.355(ng/ml) 15 20

CXCL2 ≥313.430(ng/L) 44 1 23.481 0.000

<313.430(ng/L) 20 20

CX3CL1 ≥132.675(ng/L) 56 6 27.820 0.000

<132.675(ng/L) 8 15

CCL13 ≥235.350(pg/ml) 46 3 19.184 0.000

<235.350(pg/ml) 18 18

CXCL8 ≥884.205(ng/L) 48 3 21.822 0.000

<884.205(ng/L) 16 18

ELANE ≥50.34(ug/L) 37 4 8.027 0.005

<50.34(ug/L) 27 17

LCN2 ≥7.770(ug/L) 40 2 15.697 0.000

<7.770(ug/L) 24 19

CXCL12 ≥2525.495(pg/ml) 41 0 23.487 0.000

<2525.495(pg/ml) 23 21

age <60 33 16 3.928 0.047

≥60 31 5

sex male 39 14 0.221 0.638

female 25 7

White blood cells <4×109/L 24 3 3.931 0.047

≥4×109/L 40 18

LDH ≥245 U/L 43 2 21.103 0.000

<245 U/L 21 19

Ca2+ ≥3.0 mmoL/L 10 0 2.366 0.124

<3.0 mmoL/L 54 21

Cr ≥176.8 mmol/L 46 2 25.007 0.000

<176.8 mmol/L 18 19

Hb <100 g/L 41 5 10.318 0.001

≥100 g/L 23 16

β2-MG <3.5 mg/L 14 20 35.459 0.000

≥3.5 mg/L 50 1

Serum globulin Elevated 45 3 20.191 0.000

Nomal 19 18

Table 5. Expression of cytokines between myeloma and normal groups
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Prediction of optimal diagnostic thresholds for each 
index

Next, ROC curve analysis was used to verify the 
specificity and sensitivity of each identified indica-
tor. The optimal diagnostic thresholds determined 

for CCL27, CXCL2, CX3CL1, CCL13, CXCL8, ELANE, 
LCN2, and CXCL12 were 189 ng/mL, 313 ng/L, 132 
ng/L, 235 pg/mL, 884 ng/L, 50 µg/L, 7 µg/L, and 
2525 pg/mL, respectively. Area under the ROC curve 
values for each cytokine were 0.967, 0.924, 0.960, 
0.960, 0.935, 0.846, 0.888, and 0.987, respectively 
(Table 3, Table 4 and Figure 5). Taking each thresh-
old as the boundary, differences in each index be-
tween the myeloma and healthy groups were com-
pared. Levels of each index were significantly higher 
in myeloma than control samples, as were those 
of serum LDH, Cr, Hb, β2-MG, and globulin; the 
differences were statistically significant (Table 5).

Correlations between hub gene expression levels and 
clinical indicators

CX3CL1, CCL13, CXCL8, and CXCL12 levels were 
positively correlated with those of hemoglobin and 
β2-MG; CCL27 and CXCL2 levels were only corre-
lated with β2-MG level; while CCL13 was associ-
ated with white blood cell count. No hub genes 
correlated with the ratio of primitive and immature 
PCs in bone marrow or LDH were detected. Multi-

Correlation coefficient CCL27 CX3CL1 CXCL2 CCL13 CXCL8 ELANE LCN2 CXCL12

Age
r 0.007 -0.127 0.011 0.185 0.045 0.274 0.006 0.044
p value 0.948 0.247 0.919 0.090 0.679 0.011 0.959 0.689
WB
r -0.120 -0.025 -0.180 -0.349 -0.185 -0.122 -0.067 -0.123
p value 0.275 0.823 0.099 0.001 0.090 0.265 0.540 0.261

Hb
r -0.189 -0.295 -0.400 -0.275 -0.361 -0.171 0.009 -0.315
p-value 0.083 0.006 0.000 0.011 0.001 0.117 0.938 0.003
Plt
r -0.012 0.06 -0.030 -0.112 -0.149 -0.178 -0.061 0.069
p value 0.927 0.635 0.812 0.380 0.240 0.160 0.631 0.590
Cr
r -0.008 0.113 -0.030 -0.153 -0.101 -0.024 0.084 -0.093
p value 0.945 0.310 0.789 0.166 0.362 0.828 0.449 0.402
LDH
r 0.200 0.162 0.053 -0.071 -0.036 -0.029 0.026 0.123
p value 0.067 0.139 0.627 0.520 0.742 0.795 0.814 0.264
β2-MG
r 0.421 0.526 0.359 0.244 0.457 0.184 0.206 0.410
p value 0.000 0.000 0.001 0.029 0.000 0.102 0.066 0.000
Homocysteine
r 0.421 0.181 0.132 -0.131 -0.257 0.045 0.089 -0.041
p value 0.000 0.204 0.362 0.363 0.071 0.755 0.537 0.776
Percentage of PC
r 0.173 0.021 0.156 0.094 -0.077 0.018 -0.249 -0.059
p-value 0.344 0.908 0.394 0.610 0.676 0.923 0.170 0.750
Percentage of PC, Percentage of primary and young plasma cells

Table 6. The correlation between the test variables and clinical indicators

Figure 5. ROC curve analyses of each cytokine. The y-axis in-
dicates the sensitivity and the x-axis represents 1- specificity.
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variate analysis demonstrated that CCL27, CXCL2, 
and β2-MG levels were associated with myeloma 
incidence (Table 6, Table 7). 

Discussion

Significant improvements in microarray ex-
pression data have facilitated identification of 
abnormally expressed genes, which can help in 
disease diagnosis and treatment; however, results 
based on microarray data are not always repeatable 
and can be error prone. Hence, it is advisable to 
eliminate false positives by analyzing various data 
sets from experiments designed in parallel [23,24]. 
In this study, we investigated the expression and 
potential biological functions of inflammatory cy-
tokines in MM using bioinformatics tools.

Chemokines have recently been recognized as 
tumor markers [14,25], and have important roles 
in tumor occurrence and progression. Cytokines 
and chemokines produced by immune-related cells 
in the tumor microenvironment can induce epi-
genetic changes and genomic instability, leading 
to tumor cell growth [26,27]. Myeloma cell pro-
liferation and metastasis, and PC in the BMM are 
closely associated with bone marrow stromal cells, 
including osteoblasts, endothelial cells, bone mar-
row mesenchymal stem cells, hematopoietic cells, 
and fat cells, which release cell chemotactic factors 
that can induce resorption of mature osteoclasts 
and bone [14,28]. By analyzing myeloma gene ex-
pression profile data, Botta et al. [28] found that 
expression of the inflammatory cytokines, IL2, IL8, 
IL10, TNF, TGFB1, and VEGFA, differed significantly 
at various stages of myeloma, and had independent 
predictive value for disease prognosis; high levels 
of IFNG, IL2, and CCL2 expression were associated 
with good prognosis, while high CCL3 or VEGFA 
expression was associated with poor survival.

In this study, we combined two different mye-
loma datasets, GSE5900 and GSE6477 and analyzed 
GO enrichment, KEGG pathways, and PPI networks 
and modules, to identify eight genes (CCL27, CXCL2, 
CX3CL1, CCL13, CXCL8, ELANE, LCN2, and CXCL12), 
with significantly differential expression between 
patients and controls. In both data sets, significant 
differences were observed between patients with 

MM and healthy controls, with different expression 
levels detected according to disease stage. In the 
GSE5900 data set, levels of CXCL2, CXCL8, CXCL12, 
CCL27, and LCN2 were decreased in the MGUS and 
SMM groups compared with healthy controls, 
while ELANE, CX3CL1, and CCL3 levels did not dif-
fer significantly from those in the healthy control 
group. In the GSE6477 data set, levels of CXCL2, 
CXCL8, CXCL12, LCN2, ELANE, and CCL13 were 
significantly lower in the MGUS, NMM, RMM, 
and SMM groups than in healthy controls, while 
those of CX3CL1 and CCL27 were higher. CD138+ PC 
were analyzed in both datasets. Except for CXCL2, 
CXCL8, CXCL12, and LCN2, levels of which were 
lower in patients than controls in both datasets, 
the expression levels of other cytokines were not 
consistent between the two datasets. Based on the 
results of KEGG/GO analysis, these cytokines may 
be involved in cell adhesion, transcriptional dys-
regulation in cancer, cytokine receptor interaction, 
and hematopoietic cell lineage signaling pathways, 
among other functions, and have specific roles in 
hematopoietic system diseases, including myelo-
ma, bone tumors, and MM.

To validate the identified changes of cytokine 
expression, we collected samples from 64 cases 
clinically diagnosed with MM [1]. Bone marrow 
pulp and plasma from patients were examined for 
changes in various indicators, and we found that 
levels of CXCL2, CXCL8, CXCL12, LCN2, ELNAE, 
CCL13, CX3CL1, and CCL27 were significantly high-
er in MM bone marrow and plasma samples than 
those in healthy peripheral blood. These results 
indicate that cytokine secretion is elevated in MM; 
however, the reason for these observed increases 
remains unclear.

Bone marrow stromal cell-derived interleu-
kin-8 (IL-8/CXCL8) affects many stages of tumor 
progression, including survival, proliferation, inva-
sion, and angiogenesis [24]. In this study, we found 
that CXCL8 was decreased in myeloma CD138+ PCs, 
while levels were increased in plasma and bone 
marrow, suggesting that CXCL8 may be secreted by 
bone marrow stromal cells, rather than from bone 
marrow PCs. Myeloma cell exosomes can promote 
CXCL8 release by mesenchymal stem cells through 
activation of the endothelial growth factor path-

Independent variable Regression coefficient Standard deviation Wald-value OR(95%CI) p value

CCL27 4.691 1.443 10.570 108.9 (6.4~1843.0) 0.001

CXCL2 3.478 1.513 5.288 32.4 (1.67~628.4) 0.021

β2-MG 4.111 1.445 8.090 61.0 (3.59~1037.4) 0.004

Table 7. Multivariate logistic regression analysis of multiple myeloma diagnosis
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way, thus indirectly inducing osteoclast generation 
[29]. Immature B cells can also secrete CXCL8 [30]. 
Increased CXCL8 expression in PC tumors is as-
sociated with bone metastasis [31], and fibroblasts 
can also mediate angiogenesis through secretion 
of CXCL8 and CCL2 (MCP-1) [26]. 

CXCL12 is an important target for inhibiting 
systemic MM cell migration [32], and a key regula-
tor of the tumor microenvironment, which influ-
ences various oncogenic processes, including angio-
genesis, as well as promoting tumor cell migration 
and adhesion to stromal cells [33]. CXCL12 is secret-
ed by several cell types in the bone marrow, includ-
ing osteoclasts and endothelial cells, and mediates 
bone metastasis [31,33]. The CXCL12/CXCR4 sign-
aling pathway functions in tumor cell metastasis 
and invasion [34,35], and neutralization of CXCL12 
inhibits homing and growth of myeloma cells [33].

ELANE is another member of the CXCL protein 
superfamily that is mainly produced by neutrophils 
and enhances antimicrobial activity in an autocrine 
manner [36]; however, whether this process partici-
pates in myeloma development remains unclear. 
Lentini et al. [37] found that autosomal dominant 
ELANE mutation causes severe congenital neutro-
penia (SCN). As a proto-oncogene encoded protein, 
ELANE promotes angiogenesis and plays an im-
portant role in tumor genesis, development, and 
metastasis [38], as well as inhibiting osteoblastic 
differentiation by down-regulating the ERK1/2 
signaling pathway [39].

CX3CL1 is expressed on endothelial and stro-
mal cells in the bone marrow and can be upregulat-
ed by tumor necrosis factor (TNFα) in endothelial 
cells; primary CD138+ cells do not express CX3CL1. 
Levels of BM CX3CL1 are significantly increased 
in patients with MM relative to those with SMM 
and MGUS, and contribute to bone metastasis and 
angiogenesis in patients with MM [40,41].

CC chemokines are a subfamily comprising 27 
chemotactic cytokines, which mediate intercellular 
communication [42,43]. One of the most important 
functions of chemotactic cytokines is to recruit 
monocytes to sites of inflammatory response [44], 
and they also have crucial roles in the tumor mi-
croenvironment [44-46]. There are no reports of 
the importance of CCL13 in cancer; however, this 
chemokine may increase apoptosis and can lead to 
development of drug resistance in tumors [47,48]. 
Further, CCL27 and CCL28 signaling through 
CCR10 may cooperate with inflammatory mediators 
and VEGF-D during tumor lymphangiogenesis [42].

Lipocalin-2 (LCN2) binds covalently to the 
gelatinase enzyme under conditions of ischemia/
hypoxia, stress, and damage, and can be generated 
in renal tubular epithelial cells; therefore, LCN2 is 

regarded as a sensitive marker of kidney damage. 
In MM, urine LCN2 levels are associated with early 
acute kidney injury and can be used as an early 
marker of renal function injury [49].

In this study, we used ROC curves to evalu-
ate the specificity and sensitivity of each marker, 
and determined optimal diagnostic thresholds for 
CCL27, CXCL2, CX3CL1, CCL13, CXCL8, ELANE, 
LCN2, and CXCL12 of 189 ng/mL, 313 ng/L, 132 
ng/L, 235 pg/mL, 884 ng/L, 50 µg/L, 8 µg/L, and 
2525 pg/mL, respectively. Based on these thresh-
olds, comparison of these indices in patients with 
MM and controls demonstrated that levels of 
each factor were clearly higher in patients. Fur-
ther, CCL27, CXCL2, CX3CL1, CCL13, CXCL8, and 
CXCL12 levels were positively correlated with 
those of β2-MG. Nevertheless, we did not identify 
any hub genes correlated with the ratio of primi-
tive and immature PCs in bone marrow or LDH, 
likely because the study was underpowered due to 
the small number of cases. No analysis of correla-
tions between cytokines and gene mutations was 
conducted. We found that high levels of CCL27, 
CXCL2, and β2-MG are associated with MM inci-
dence. Based on the results of KEGG/GO analysis, 
these cytokines may be involved in cell adhesion, 
transcriptional dysregulation in cancer, cytokine 
receptor interaction, and hematopoietic cell line-
age signaling pathways, and these possibilities will 
be explored in our future research. 

This study has certain limitations: the sample 
size was small, therefore, further studies of molec-
ular pathogenesis and large-scale validation with 
clinical tumor specimens are required.

Conclusions

Two MM microarray datasets from the GEO 
series were systematically analyzed in this study. 
Based on expression levels, enriched GO, KEGG, and 
DO pathways, and protein-protein interaction anal-
yses, eight genes (CCL27, CXCL2, CX3CL1, CCL13, 
CXCL8, ELANE, LCN2, CXCL12) were found to be 
expressed at lower levels in MM CD138+ cells; how-
ever, they were clearly present at higher levels in 
patient bone marrow and blood plasma in MM than 
in controls. CCL27, CXCL2, and β2-MG levels were 
associated with MM incidence. The underlying 
mechanisms may involve lymphocyte regulation, 
neutrophil activation, neutrophil degranulation, 
lymphocyte proliferation, and humoral immune re-
sponse interaction. Our findings provide potential 
novel biomarkers for early diagnosis of MM. 
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